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Abstract

Serotonin is perhaps best known as a neurotransmitter that modulates neural activity and a wide 

range of neuropsychological processes, and drugs that target serotonin receptors are used widely in 

psychiatry and neurology. However, most serotonin is found outside the central nervous system, 

and virtually all of the 15 serotonin receptors are expressed outside as well as within the brain. 

Serotonin regulates numerous biological processes including cardiovascular function, bowel 

motility, ejaculatory latency, and bladder control. Additionally, new work suggests that serotonin 

may regulate some processes, including platelet aggregation, by receptor-independent, 

transglutaminase-dependent covalent linkage to cellular proteins. We review this new “expanded 

serotonin biology” and discuss how drugs targeting specific serotonin receptors are beginning to 

help treat a wide range of diseases.
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INTRODUCTION

Although serotonin (5-hydroxytryptamine, 5-HT) was discovered 60 years ago (1), the study 

of serotonin and its receptors continues to yield new biological insights of medical relevance 

in virtually all major organ systems, including the cardiovascular, pulmonary, 

gastrointestinal (GI), and genitourinary systems as well as the central nervous system (CNS) 

(2). Serotonin and serotonin receptors are important in the regulation of virtually all brain 

functions, and dysregulation of the serotonergic system has been implicated in the 

pathogenesis of many psychiatric and neurological disorders (3, 4).
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A greater understanding of serotonin function has emerged during the last two decades with 

the cloning of at least 15 serotonin receptors, which are grouped into seven families based 

on signaling mechanisms (5). Other important advances have included the subsequent 

development of receptor-specific knockout mice, and the development of receptor subtype-

selective drugs. These advances have also shown us that serotonin has critically important 

functions in many human organ systems outside the CNS, including the regulation of energy 

balance and food intake, GI and endocrine function, and cardiovascular and pulmonary 

physiology. These findings may help explain the diverse side effects of serotonergic drugs—

from diabetes and metabolic syndrome to valvular heart disease (6, 7). These recent findings 

also imply that developers of new serotonin receptor subtype-selective drugs will need to 

consider the roles of a given receptor subtype in the physiology of multiple organ systems. 

In time, these advances may lead to therapies with improved efficacy and side-effect 

profiles, and will enhance our understanding of a variety of neuropsychiatric and medical 

disorders.

Here we review how serotonin and its cognate receptors regulate the function of multiple 

human organ systems and disease processes. We also highlight specific settings where new 

serotonergic drugs may be introduced to medical practice in the future.

FROM BRAIN TO BEHAVIOR

Serotonin modulates virtually all human behavioral processes. This finding may seem 

surprising given that less than one in a million CNS neurons produce serotonin and the vast 

majority of total body serotonin is found outside the CNS (8). However, brainstem serotonin 

neurons send ascending projections that terminate in a defined and organized manner in 

cortical, limbic, midbrain, and hindbrain regions (Figure 1). Indeed, all brain regions express 

multiple serotonin receptors in a receptor subtype-specific fashion (9). Additionally, 

individual neurons may express multiple serotonin receptors. For instance, Layer V 

pyramidal neurons express 5-HT1A and 5-HT2A receptors, which exert opposing effects on 

pyramidal neuron firing (10). CNS serotonin neurons are thus ideally positioned to modulate 

the activity of a wide variety of human brain circuits, which explains, in part, the pleiotropic 

behavioral effects of brain serotonin (9).

The behavioral and neuropsychological processes modulated by serotonin include mood, 

perception, reward, anger, aggression, appetite, memory, sexuality, and attention, among 

others. Indeed, it is difficult to find a human behavior that is not regulated by serotonin. (A 

full discussion of how serotonin modulates the neural circuitry of behavior and emotion is 

beyond the scope of this review; see, e.g., References 11–13.) Although the neural circuitry 

responsible for each of these behavioral processes is still being elucidated, in many cases 

there is at least one specific brain region or nucleus that is critical for a given behavior. The 

expression pattern of each serotonin receptor within the human CNS is also known (9). 

Thus, the question of how serotonin modulates each behavioral process can usually be 

framed in terms of how specific serotonin receptors modulate the specific brain region(s)/

nuclei involved in producing the behavioral output.
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Just as each behavior is regulated by multiple serotonin receptors, each serotonin receptor is 

expressed in multiple brain regions and likely contributes to the modulation of multiple 

behavioral processes. For example, anxiety-like behavior is regulated primarily by 5-HT1A 

and 5-HT2C receptors, among others (14, 15), but the 5-HT2C receptor regulates not only 

anxiety but also reward processing, locomotion, appetite, and energy balance (16). This 

principle explains why drugs targeting a specific serotonin receptor nonetheless have effects 

on multiple behavioral processes (16).

Despite this lack of a one-to-one correspondence between specific serotonin receptors and 

individual behavioral processes, various drugs targeting central serotonergic activity and 

serotonergic receptors are currently used clinically or are in clinical development for the 

treatment of nearly every neuropsychiatric disorder (17, 18).

SEROTONIN AND VASCULAR BIOLOGY

Both within the CNS and throughout the body, serotonin plays a number of roles in vascular 

biology, ranging from the control of vascular resistance and blood pressure to the control of 

hemostasis and platelet function (Figure 2). Serotonin causes vasoconstriction or 

vasodilation in different vascular beds depending on the particular receptors that are 

expressed in each vessel wall and surrounding smooth muscle tissue (19). Indeed, activation 

of 5-HT1B receptors on cerebral blood vessels causes vasodilation, which may partly explain 

the analgesic effects of the triptan antimigraine drugs (20).

Platelets have significant vesicular serotonin stores but lack the enzymes to synthesize 

serotonin (21); instead, they take up serotonin from the plasma via the serotonin transporter. 

Serotonin is then secreted by the platelet dense granules during platelet activation and plays 

a role in promoting platelet aggregation and vasoconstriction of surrounding blood vessels, 

facilitating hemostasis. Selective serotonin reuptake inhibitors (SSRIs) can increase bleeding 

time by inhibiting the uptake and storage of platelet serotonin, so caution should be used in 

patients at high risk for bleeding or on anticoagulants. Indeed, platelets from individuals 

treated with SSRIs, as well as platelets from serotonin transporter knockout mice, show 

decreased aggregation responses (22).

Accumulating data suggest that SSRI treatment may decrease myocardial infarction (MI) 

risk. Several case-control studies have observed lower MI rates among depressed patients 

taking SSRIs versus controls, but not among patients taking tricyclic antidepressants (23). A 

retrospective secondary analysis of post-MI patients randomized to receive SSRIs or placebo 

showed decreases in recurrent MIs and all-cause mortality among patients on SSRIs (24). 

Although depression is also an independent risk factor for MIs that may be related to altered 

serotonin biology (25), the idea that SSRIs may actually reduce MIs is intriguing and still 

awaits prospective testing (26).

Interestingly, recent studies suggest that intracellular serotonin may also play a role in 

platelet activation through covalent linkage to small G proteins via tissue transglutaminase. 

This modification constitutively activates G protein–dependent signaling pathways and 

stimulates platelet aggregation (27). In addition, serotonin is covalently cross-linked to a 
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variety of adhesion proteins and clotting factors on the platelet cell surface (28), a process 

essential for the activation of a subset of platelets. These findings have expanded the 

classical paradigm, in which serotonin works by noncovalent interactions with membrane-

bound receptors, and creates many new questions about whether serotonin can exert 

biological activity by covalently attaching to cellular proteins in other organ systems, 

including the brain.

SEROTONIN AND CARDIAC FUNCTION

Serotonin regulates several different aspects of cardiac function, ranging from electrical 

conduction to valvular closure to post–MI remodeling (Figure 2). Studies of cardiac 

abnormalities in patients with serotonin-producing carcinoid tumors provided early evidence 

that serotonin modulates heart function. High serotonin levels in these patients can cause 

atrial fibrillation (29), an effect that may be mediated by cardiac 5-HT4 receptors (30).

Aside from this role in the atria, 5-HT4 receptor expression increases in failing cardiac 

ventricles (31), and this may play a role in ventricular remodeling. Animal studies suggest 

that 5-HT4 antagonists may help improve cardiac function and block pathological 

remodeling in congestive heart failure (32), a possibility that awaits clinical trials in humans. 

Meanwhile, 5-HT2A antagonists may have utility in treating vasospastic angina and ischemic 

heart disease, and 5-HT3 antagonists have been reported to be useful in treating post-MI pain 

(33).

Serotonin also plays a pathological role in the cardiac valvulopathy caused by the appetite 

suppressant fenfluramine (see sidebar, Serotonergic Drugs andValvular Heart Disease) (7, 

34). 5-HT2B receptor activation on valvular interstitial cells is mitogenic (35), increasing 

valve leaflet area and causing the poor valve closure seen in patients exposed to these drugs. 

It has been suggested that the valvulopathy and fibrosis resulting from carcinoid syndrome 

may have a similar etiology (7). Mice lacking the 5- HT2B receptor either die of cardiac 

defects or develop dilated cardiomyopathy in adulthood (36). Thus, the 5-HT2B receptor 

plays an important role in cardiac development as well as adult cardiac valvular function.

SEROTONIN, BREATHING, AND PULMONARY ARTERY HYPERTENSION

Serotonin helps control breathing and respiratory drive through effects on brainstem 

respiratory control centers as well as on the pulmonary vasculature (Figure 2). In pulmonary 

artery hypertension (PAH), hypoxia elevates plasma serotonin levels (37) and likely 

increases mitogenic 5-HT2B receptor signaling on pulmonary artery endothelial cells. 

Increased 5-HT2B receptor signaling increases vascular resistance (38) and is necessary for 

the development of PAH, since mice deficient for 5-HT2B do not develop PAH (39). One 

patient with a heterozygous activating 5-HT2B receptor mutation developed PAH (40), 

suggesting that increased 5-HT2B receptor signaling may be sufficient to cause PAH. Indeed, 

5-HT2B antagonists can prevent the development of increased pulmonary vascular 

resistance, suggesting that these drugs could be useful clinically in treating early PAH (38).

Serotonin may also induce pulmonary artery remodeling by direct covalent attachment to 

intracellular signaling proteins in vascular smooth muscle cells (41), similar to the way 
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serotonin influences platelet function by receptor-independent covalent attachment to 

proteins. Indeed, acute blockade of the serotonin transporter by SSRIs can block the 

development of PAH and subsequent right ventricular hypertrophy in animal models (42), 

suggesting that intracellular rather than extracellular serotonin may be an etiological factor 

in PAH.

Serotonin also modulates the activity of rhythm-generating respiratory neurons in the 

brainstem pre-Boetzinger complex via the 5-HT4 receptor. Opioid analgesic drugs cause 

respiratory depression by suppressing the activity of these cells via mu opioid receptors, 

whereas activation of the 5-HT4 receptor is excitatory (43). These findings have led to the 

intriguing idea that 5-HT4 agonists could be used to block opioid-induced respiratory 

depression while still leaving opioid-induced analgesia intact (44).

Serotonergic abnormalities have also been found in roughly 50% of infants who have died 

from sudden infant death syndrome (SIDS) (45). These infants have significantly more 

medullary serotonin neurons but significantly less expression of serotonin transporter and 5-

HT1A receptor in these cells (46). Medullary serotonin neurons are highly pH sensitive and 

serve as central chemoreceptors (47), suggesting that these abnormalities may cause a 

defective respiratory response to hypercapnia that may underlie SIDS. Mice with defective 

development of serotonergic neurons have a SIDS-like syndrome (48).

SEROTONIN, ENDOCRINOLOGY, AND METABOLISM

The functions of serotonin in the endocrine system and metabolism range from the central 

control of energy balance and central modulation of the hypothalamic-pituitary-adrenal 

(HPA) axis to the direct regulation of mammary gland development (Figure 2). Several lines 

of evidence suggest an important role for hypothalamic 5-HT2C receptors in regulating 

energy balance and modulating glucose homeostasis (49). In particular, hypothalamic 5-

HT2C and 5-HT1B receptors act by modulating melanocortin pathways, and serotonin release 

into the hypothalamus stimulates sympathetic nerves that innervate brown adipose tissue 

(50). Because of these mechanisms, 5-HT2C receptor agonists may be useful for treating 

obesity and diabetes (51). Serotonin also plays a role in setting overall metabolic rate and 

temperature control. Serotonin-deficient mice show a rapid hypothermic response when 

placed in a cold environment (52), a response that may be mediated by hypothalamic 5-

HT1A and 5-HT7 receptors (53). Serotonin regulates the HPA axis at multiple levels (54) and 

thus has complex effects on the overall stress response.

Serotonin has also been implicated in the development and regeneration of metabolic and 

endocrine organs. For example, serotonin is synthesized within the developing mammary 

gland, where it is part of an autocrine-paracrine loop that is essential for mammary gland 

development (55). In the adult mammary gland, serotonin regulates epithelial tight junctions 

and milk release (56). In the liver, serotonin is important in regeneration following 

transection or volume loss. In particular, platelet-derived serotonin signals through 5-HT2A 

and 5-HT2B receptors to promote liver regeneration (57).
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SEROTONIN AND THE GASTROINTESTINAL SYSTEM

Serotonin regulates digestion at multiple levels within the human GI system and throughout 

the phylogenetic spectrum (Figure 2) (58). Roughly95%of total body serotonin is released 

into the gut by intestinal enterochromaffin cells (8), but serotonin is involved at the very 

moment that food enters the body. Activation of taste-bud cells on the tongue causes 

serotonin release onto sensory afferent nerves (59) that transmit taste information to the 

CNS. Once food enters the GI tract, it is propelled along by peristaltic waves; these waves, 

as well as intestinal motility and secretion, are modulated by serotonin (reviewed extensively 

in Reference 8). For example, intestinal serotonin regulates pancreatic enzyme secretion 

(60), a mechanism by which the gut may communicate exocrine enzyme needs to the 

pancreas based on GI contents.

Altered serotonin signaling has been implicated in functional bowel disorders, including 

irritable bowel syndrome (IBS) (8). Drugs targeting both the 5-HT3 and 5-HT4 receptors 

have been used to treat IBS. In addition, excessive GI serotonin release can activate 5-HT3 

receptors on afferent vagal nerves that innervate brainstem vomiting centers (61), which may 

partly explain why 5-HT3 antagonists such as ondansetron are effective antiemetics. 

SEROTONIN AND PAIN CONTROL, ANESTHESIA, AND SPINAL NOCICEPTION 

Serotonin modulates pain perception and nociceptive processing at multiple levels within the 

central and peripheral nervous systems (Figure 2). Within locally inflamed tissue, serotonin 

release sensitizes peripheral nerve fibers that carry nociceptive information to the CNS (62). 

Brainstem serotonin neurons send descending projections into the spinal cord that modulate 

incoming nociceptive information (63). Finally, brainstem raphe serotonin neurons send 

ascending projections to cortical and limbic regions that may modulate the psychological 

perception of pain (64).

Serotonergic abnormalities have been reported in patients with mood disorders, and altered 

serotonergic modulation of pain processing at these multiple levels may explain increased 

pain perception in these patients (64). The multiple levels at which serotonin modulates 

nociceptive processing and pain perception may also explain the efficacy of serotonergic 

drugs in treating pain disorders. For example, triptan drugs are thought to relieve migraine 

symptoms by activating thalamic 5-HT1B and 5-HT1D receptors (20), whereas tricyclic 

antidepressants and combined serotonin/ norepinephrine reuptake inhibitors such as 

duloxetine may work via the serotonergic modulation of incoming nociceptive information 

in the spinal cord (64).

The serotonin system also plays an important role in anesthesia response. Inhalational 

anesthetic agents may work in part by suppressing serotonin release, and patients taking 

serotonergic antidepressants may require increased dosage of these agents (65).

Patients taking serotonergic antidepressants are also at increased risk of developing 

serotonin syndrome, a poorly understood syndrome involving altered mental status, 

autonomic instability, and neuromuscular rigidity, when exposed to multiple drugs in an 

inpatient setting (66).
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SEROTONIN AND GENITOURINARY FUNCTION

Serotonin plays a variety of roles in the central and peripheral control of genitourinary 

function within both the brain and the spinal cord (Figure 2). Serotonin increases ejaculatory 

latency and delays orgasm through 5-HT2C and 5-HT1B receptors but also decreases 

ejaculatory latency through the 5-HT1A receptor (67). The net effect of serotonin is to 

prolong ejaculatory latency and to delay orgasm, and thus SSRIs are often prescribed off-

label to treat premature ejaculation (68). Although all SSRIs prolong ejaculatory latency to 

some degree, this effect is most pronounced with paroxetine, and there is no direct 

correlation between antidepressant efficacy and antiejaculatory latency.

Serotonin modulates micturition in a similar fashion as it does ejaculation. It controls 

urinary function via actions in the brain and spinal cord, and it regulates parasympathetic 

neural input to the bladder and somatic input to the external urinary sphincter. 5-HT2C 

receptors prevent urination whereas 5-HT1A receptors promote urination (69). The net effect 

of serotonin on urination is likely inhibitory, since combined serotonin-norepinephrine 

reuptake inhibitors are used clinically to treat stress incontinence (70).

SEROTONIN, REPRODUCTIVE FUNCTION, AND PREGNANCY

Increased serotonin levels are found in the serum of pregnant women and may play a role in 

the altered vascular physiology of pregnancy (71). Roughly tenfold increases in serotonin 

have been observed in the serum of preeclamptic women, and serotonin levels correlate with 

the severity of preeclampsia. These findings led some to propose nearly 50 years ago that 

elevated serotonin may cause preeclampsia (reviewed in Reference 71). The elevated 

serotonin in preeclamptic patients likely stems from increased platelet activation and 

aggregation as well as decreased metabolism by monoamine oxidase. The altered vascular 

tone seen in preeclampsia in high-serotonin states may be mediated by 5-HT1B and 5-HT1D 

receptors (72); if so, blocking these serotonin receptors or blocking platelet serotonin 

accumulation with SSRIs could help treat preeclampsia (73). Interestingly, although SSRIs 

can increase hemorrhage risk, recent data show that pregnant women taking SSRIs are not at 

increased risk of postpartum hemorrhage (74). However, exposure to SSRIs during 

pregnancy may increase the newborn’s risk of developing persistent pulmonary hypertension 

(75).

Serotonin also regulates uterine contraction through 5-HT2A receptors (Figure 2) (76). 5-

HT2A receptor–induced uterine contractions favor the cervical end of the uterus, suggesting 

a role in promoting sperm transport toward the oviduct (77). In addition, serotonin has been 

shown to induce uterine collagenase expression after delivery, which promotes uterine 

involution (78).

CONCLUSIONS

As these examples show, serotonin is much more than a neurotransmitter essential for the 

modulation of mood. It regulates a wide range of physiologic and pathophysiologic 

processes in most human organs. This explains why serotonergic drugs modulate 
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phenomena ranging from ejaculatory latency to hemostatic function in addition to their more 

commonly appreciated effects on mood and cognition.

Serotonin typically regulates a given physiologic process (such as digestion, pain perception, 

or energy balance) at multiple steps through different and frequently opposing mechanisms. 

For example, serotonin is not simply pro- or antianalgesic; instead, it both potentiates and 

inhibits nociceptive processing at various levels of the nervous system.

Why is serotonergic modulation of these processes so complex? One possibility is that this 

complexity allows wide modulatory activity of biological processes while preserving 

homeostasis even under diverse environmental conditions. For example, depleting serotonin 

acutely has little effect on mood in normal individuals (79), even though serotonin receptors 

modulate a number of neural pathways that subserve mood. At the same time, serotonergic 

dysregulation is seen in multiple disease processes ranging from IBS to depression, and 

correction of specific serotonin receptor signaling abnormalities can often help treat the 

disease in question.

The richness and complexity of serotonergic modulation of physiologic and 

pathophysiologic processes discussed here provide both a pharmacologic opportunity and 

challenge. On the one hand, the involvement of specific serotonin receptors in a given 

process provides an opportunity to pharmacologically target these specific receptors in a 

related disease state. On the other hand, the fact that each individual serotonin receptor is 

involved in multiple physiologic processes also presents a challenge, since even a drug 

targeting a single serotonin receptor is likely to have effects on multiple body systems. For 

example, although 5-HT4 agonists may have rapid-onset antidepressant activity within the 

CNS, their clinical use may be tempered by their effects on other organ systems, such as on 

GI motility and on cardiac hypertrophy in heart failure.

As research on the role of specific serotonin receptors in human physiology progresses, the 

difficulty of this challenge will become clear. In the process, we will likely gain new 

serotonergic drugs and disease treatments as well as a deeper understanding of the beauty 

and complexity of human biology.
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SEROTONERGIC DRUGS AND VALVULAR HEART DISEASE

The drug combination of fenfluramine/phentermine was exceptionally effective for 

inducing weight loss in obese individuals (80), although this advantage was offset by the 

induction of valvular heart disease by fenfluramine (81), which led to the withdrawal of 

fenfluramine. In 2000, we and others discovered that a metabolite of fenfluramine—

norfenfluramine, a potent activator of 5-HT2B receptors—was likely responsible for the 

valvulopathy induced by fenfluramine and the “fen/phen” combination (34, 82). We 

subsequently screened a small library of available drugs and identified certain ergolines 

(pergolide and cabergoline) and amphetamine derivatives 

[methylenedioxymethamphetamine (MDMA; “Ecstasy”)] as potent 5-HT2B agonists 

(35).We predicted that they too would be associated with valvular heart disease with 

chronic use (for review see References 7 and 83). Subsequent clinical studies have 

indicated that pergolide, cabergoline, and MDMA use are associated with valvular heart 

disease indistinguishable from that induced by fenfluramine (84–86). Based on these 

findings, we have recommended that all approved and candidate medications be screened 

at 5-HT2B receptors for agonist actions prior to use in humans (7, 34).
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Figure 1. 
Central serotonergic pathways, effects, and drugs. In the central nervous system (CNS), 

serotonin is almost exclusively produced in neurons originating in the raphe nuclei located in 

the midline of the brainstem. These serotonin-producing neurons form the largest and most 

complex efferent system in the human brain. The most caudal raphe innervate the spinal 

cord, while the more rostral raphe, the dorsal raphe nucleus and the medial raphe nucleus, 

innervate much of the rest of the CNS by diffuse projections. Indeed, virtually every cell in 

the brain is close to a serotonergic fiber, and nearly all behaviors as well as many other brain 

functions are regulated by serotonin. Not surprisingly, serotonin receptors and transporters 

are a major focus of CNS drug development, and many current medications modulate 

serotonin neurotransmission. 5-HT, serotonin; MAOI, monoamine oxidase inhibitor; SSRI, 

selective serotonin reuptake inhibitor.
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Figure 2. 
Myriad effects of serotonin outside the central nervous system. 5-HT, serotonin; AV, 

atrioventricular; CHF, congestive heart failure; HPA, hypothalamic-pituitary-adrenal; HTN, 

hypertension; IBS, irritable bowel syndrome; SIDS, sudden infant death syndrome.
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