Toxicology

A special contribution from the American Association of Poison Control Centers.

1985 Annual Report of the American Association of Poison Control Centers National Data Collection System

TOBY L. LITOVITZ, MD, SVEN A. NORMANN, PharmD, JOSEPH C. VELTRI, PharmD

In 1983, the American Association of Poison Control Centers (AAPCC) piloted a project to collect epidemiological data on poison exposures reported to poison centers nationwide. ${ }^{1}$ Sixteen participating poison centers reported 251,012 human poison exposures during that year. Forty-seven centers participated in the National Data Collection System in 1984, reporting 730,224 human poison exposures. ${ }^{2}$ The data presented herein rcflect 900,513 human poison exposures reported in 1985 to 56 participating poison centers.

CHARACTERIZATION OF PARTICIPATING CENTERS

Of the 56 poison centers that participated in the 1985 AAPCC National Data Collection System, five submitted data for only a portion of the year. Twenty of the 56 centers were certified as regional poison control centers by AAPCC during the data collection interval. Annual center call volumes (human poison exposure cases only) ranged from 1,066 to 55,547 (mean 16,616). Center penetrance (defined as the number of human poison exposure cases reported to a

[^0][^1]

FIGURE 1. Fifty-six poison centers participated in the Data Collection System in 1985. The lightly stippled areas represent regions served by poison centers reporting data during the entire year. Cross-hatched areas denote reporting during the entire year. (Map adapted from Hammond's Outline Map of the United States.)
center divided by the population served by that center) ranged from 2.1 to $20.2 / 1,000$, with a mean of 7.9 reported exposures per thousand.

A total population of 113.6 million was served by the participating centers including portions of 35 states and the District of Columbia (Fig. 1). Noting the 238.7 million estimated United States population during 1985, the data presented represent an estimated 47.6% of the human poison exposures reported to poison control centers in the United States each year. Thus, the 900,513 human poison exposures reported in this database can be extrapolated to predict a nationwide incidence of human poison exposures in ex-

TABLE 1. Site of Caller and Site of Exposure, Human Exposure Cases Only

	Site of Caller $(\%)$	Site of Exposure $(\%)$
Residence	81.7	90.6
Health care		
\quad facility	13.7	0.5
Workplace	1.5	2.4
School	0.6	0.8
Other	1.3	2.1
Unknown	1.3	3.5
\quad Total	100.0	100.0

cess of 1.9 million. Extrapolations from the frequency of reported poisonings to the frequency of actual poisonings occurring annually in the United States cannot be made from these data alone, as considerable variations in poison center penetrance were noted. Indeed, assuming all centers reached the penetrance level of 20.2 poisonings/ 1,000 population reported by one center, then 4.8 million poisoning would have been reported to poison control centers in 1985. Because of the growth and development of this relatively new data collection project, with variable (increasing) center participation from year to year, the data do not directly identify a trend in the overall incidence of poisonings in the United States. However, an analysis of data from 40 centers that participated for the entirety of 1984 and 1985 indicates a 10.9% increase in reported poison exposures from 1984 to 1985 within the regions served by these 40 centers.

REVIEW OF THE DATA

The 900,513 human poison exposures reported to the American Association of Poison Control Centers (AAPCC) National Data Collection System in 1985 represent the largest poison exposure database ever compiled in the United States. An analysis of the data

TABLE 2. Age and Sex Distribution of Human Poison Exposure Cases

Age	Male	Female	Unknown	Total	
	Number (\%)	Number (\%)	Number (\%)	Number	(\%)
<1 year	38,632 (52.0)	34,341 (46.2)	1,341 (1.8)	74,314	(8.3)
1 year	90,208 (52.7)	78,548 (45.9)	2,336 (1.4)	171,092	(19.0)
2 years	96,599 (53.3)	81,862 (45.2)	2,765 (1.5)	181,226	(20.1)
3 years	46,988 (53.8)	38,892 (44.6)	1,407 (1.6)	87,287	(9.7)
4 years	20,660 (55.3)	16,086 (43.1)	602 (1.6)	37,348	(4.1)
5 years	10,805 (55.9)	8,222 (42.5)	326 (1.6)	19,353	(2.1)
6-12 years	26,405 (56.9)	19,223 (41.4)	805 (1.7)	46,433	(5.2)
13-17 years	14,746 (40.2)	21,454 (58.5)	487 (1.3)	36,687	(4.1)
>17 years	93,209 (43.3)	118,452 (55.1)	3,378 (1.6)	215,039	(23.9)
Unknown*	11,840 (37.3)	13,076 (41.2)	6,818 (21.5)	31,734	(3.6)
Total	450,092 (50.1)	430,156 (47.7)	20,265 (2.2)	900,513	(100.0)

* In the unknown category, although the exact age was not reported, 881 were infants and 4,334 were children aged 2 to 15 years.

TABLE 3. Number of Substances Involved in Human Poison Exposure Cases

	Number of Cases	Percentage of Cases
1 substance	839,893	93.3
2 substances	45,721	5.1
3 substances	8,043	0.9
4 substances	2,176	0.2
5 substances	739	0.1
6 substances	306	0.0
7 substances	122	0.0
8 substances	73	0.0
9 substances	37	0.0
$\geqslant 10$ substances	91	0.0
unknown	3,312	0.4
Total	900,513	100.0

indicates that 90.6% of exposures occurred in the home (Table 1). Two unlikely sites of poisonings, health care facilities and schools, accounted for 4,842 and 7,264 poison exposures respectively. Poison center peak call volumes were noted from 5:00 PM to 8:00 PM, although call frequency remained consistently high between 9:00 AM and 10:00 PM, with 83.1% of calls logged during this 13 -hour period.

The age and sex distribution of human poison exposure victims is outlined in Table 2. One- and two-yearold children together constituted 39.1% of reported cases, and 63.4% of cases involved children under six years of age. A male predominance is found among children less than 13 years old, but the gender distribution is reversed in teenagers and adults.

A single substance was implicated in 93.3% of reports, and only 1.3% of patients were exposed to more than two possibly poisonous drugs or products (Table 3). Most cases of human exposure were acute (98.5%), as were most poison-related fatalities ($\mathbf{9 4 . 8 \%}$). (Chronic exposures were arbitrarily defined as repeated exposures to the same toxic substance or a single exposure lasting longer than eight hours.)

The vast majority (89.9%) of poison exposures were accidental; suicidal intent was present in 5.1% of cases (Table 4). Whereas accidental poisonings outnumbered both intentional poisonings and adverse reactions in all age groups (Table 5), the ratio was lower in teenage and adult cases. In contrast, of the 328 human poisoning fatalities reported, this ratio was re-
(Text continues on page 439.)
TABLE 4. Reason for Human Poison Exposure Cases

	Number	Percentage
Accidental		
General	773,958	85.9
Misuse	15,843	1.8
Occupational	14,373	1.6
Environmental	4,282	0.5
Unknown	1,361	0.2
\quad Total	809,817	89.9
Intentional		
Suicidal	45,967	5.1
Abuse \dagger	10,243	1.1
Misuse \ddagger	8,446	0.9
Unknown	9,125	1.0
\quad Total	73,781	8.2
Adverse Reaction		
Drug	5,449	0.6
Food	5,086	0.6
Other	1,377	0.2
\quad Total	11,912	1.3
Unknown	5,003	0.5
Total	900,513	100.0

* Improper use of a substance where therapeutic or beneficial results were intended, e.g., an overdose occurring because both parents gave the same medication to a child and neither was aware (at the time) of the other's action, or a case where misreading the label of a product results in an unintended exposure.
\dagger Improper use of a substance where the patient was seeking a psychotropic effect.
\ddagger Intentional incorrect use of a substance where a psychotropic effect was not sought, e.g., intentional excessive dosing to obtain a more rapid or superior pharmacologic effect for presumed "therapeutic purposes."

TABLE 5. Distribution of Reason for Exposure by Age, Human Exposure Cases Only

Reason	<6 Years	6-12 Years	13-17 Years	>17 Years	Unknown	Total
	Number (\%)					
Accidental	572,536 (63.6)	43,077 (4.8)	19,146 (2.1)	154,734 (17.2)	20,324 (1.8)	809,817 (89.9)
Intentional	982 (0.1)	2,239 (0.2)	16,528 (1.8)	49,324 (5.5)	4,708 (0.5)	73,781 (8.2)
Adverse reaction	1,600 (0.2)	824 (0.1)	528 (0.1)	8,280 (0.9)	680 (0.1)	11,912 (1.3)
Unknown	717 (0.1)	293 (0.0)	485 (0.0)	2,701 (0.3)	807 (0.1)	5,003 (0.6)
Total	575,835 (63.9)	46,433 (5.2)	36,687 (4.1)	215,039 (23.9)	26,519 (2.9)	900,513(100.0)

TABLE 6. Distribution of Reason for Exposure and Age for 328 Human Fatalities

	<6 Years	6-12 Years	13-17 Years	>17 Years	Total
Accidental					
General	18	0	2	27	47
Misuse	2	0	0	5	7
Occupational	0	0	0	10	10
Unknown	0	$\underline{0}$	0	0	0
Total	20	0	2	42	64
Intentional					
Suicide	0	0	13	165	178
Misuse	0	0	0	4	4
Abuse	0	0	5	38	43
Unknown	0	$\underline{0}$	1	21	22
Total	0	0	$\overline{19}$	228	247
Adverse reaction	0	1	0	5	6
Unknown	0	$\underline{0}$	0	11	11
Total	20	1	21	286	$\overline{328}$

TABLE 7. Distribution of Route of Exposure by Patient Management Site for Human Poison Exposure Cases

	Non-health-care facility		Health-care facility		Unknown Site Number (\%)	Total	
	Number (\%)		Number (\%)			Number	(\%)*
Ingestion	573,705 (61.3)		149,090 (15.9)		18,885 (2.0)	741,680 (79.2)	
Dermal	43,773	(4.7)	13,240	(1.4)	2,112 (0.2)	59,125	(6.3)
Ophthalmic	34,089	(3.6)	14,125	(1.5)	1,409 (0.2)	49,623	(5.3)
Inhalation	26,222	(2.8)	18,176	(1.9)	3,093 (0.3)	47,491	(5.1)
Bites and stings	20,462	(2.2)	7,590	(0.8)	1,088 (0.1)	29,140	(3.1)
Other/unknown	3,519	(0.4)	2,136	(0.2)	1,319 (0.1)	6,974	(0.7)
Parenteral	492	(0.1)	1,837	(0.2)	198 (0.0)	2,527	(0.3)

* Multiple routes of exposure were observed in many poison exposure victims. Percentage is based upon the total number of exposure routes $(936,560)$ rather than the total number of human exposures $(900,513)$.

TABLE 8. Symptom Assessment at Time of Initial Call to Poison Center

	Number (\%)	
Asymptomatic	596,137	(66.2)
Symptomatic, related to exposure	224,403	(24.9)
Symptomatic, unrelated to exposure	12,976	(1.4)
Symptomatic, unknown if related	39,722	(4.4)
Unknown	$\underline{27,275}$	(3.0)
Total	900,513	(100.0)

TABLE 9. Management Site of Human Poison Exposure Cases

	Number (\%)	
Non-health-care facility	$674,621 \quad(74.9)$	
Health-care facility		
Already there at time		
\quad of call to poison center	$99,772 \quad(11.1)$	
Referred by poison center	$98,874 \quad(11.0)$	
Other/unknown	$\underline{27,246}(3.0)$	
\quad Total	$900,513(100.0)$	

TABLE 10. Medical Outcome of Human Poison Exposure Cases by Patient Age

	<6 Years	$\underline{6-12 \text { Years }}$	13-17 Years	>17 Years		Unknown Number (\%)	Total	
	Number (\%)	Number (\%)	Number (\%)	Number			Numbe	(\%)
No effect	331,150 (36.8)	17,440 (1.9)	9,293 (1.0)	39,104	(4.3)	7,034 (0.8)	404,021	(44.9)
Minor effect	67,189 (7.5)	13,190 (1.5)	13,113 (1.5)	85,206	(9.5)	8,436 (0.9)	187,134	(20.8)
Moderate effect	3,347 (0.4)	1,020 (0.1)	2,382 (0.3)	15,073	(1.7)	881 (0.1)	22,703	(2.5)
Major effect	476 (0.1)	78 (0.0)	342 (0.0)	2,342	(0.3)	121 (0.0)	3,359	(0.4)
Death	20 (0.0)	1 (0.0)	21 (0.0)	286	(0.0)	0 (0.0)	328	(0.0)
Unknown, non-toxic*	130,965 (14.5)	9,411 (1.0)	4,315 (0.5)	26,623	(3.0)	2,672 (0.3)	173,986	(19.3)
Unknown, potentially toxic \dagger	28,004 (3.1)	3,864 (0.4)	6,125 (0.7)	36,510	(4.1)	5,560 (0.6)	80,063	(8.9)
Unrelated effect	5,988 (0.7)	859 (0.1)	531 (0.1)	6,735	(0.7)	566 (0.1)	14,679	(1.6)
Unknown	8,696 (1.0)	570 (0.1)	565 (0.1)	3,160	(0.3)	1,249 (0.1)	14,240	(1.6)
Total	575,835 (63.9)	46,433 (5.2)	36,687 (4.1)	215,039	23.9)	26.519 (2.9)	900,513	(100.0)

* No follow-up provided as exposure was assessed as nontoxic.
\dagger Patient lost to follow-up. Exposure was assessed as potentially toxic.

TABLE 11. Distribution of Medical Outcome by Reason for Exposure for Human Poison Exposure Victims

	Accidental	$\frac{\text { Intentional }}{\text { Number (\%) }}$	Adverse Reaction Number (\%)	$\frac{\text { Unknown }}{\text { Number (\%) }}$	Total	
	Number (\%)				Number (\%)	
No effect	388,710 (43.2)	13,067 (1.5)	1,330 (0.1)	914 (0.1)	404,021	(44.9)
Minor effect	156,275 (17.4)	23,800 (2.6)	5,873 (0.7)	1,186 (0.1)	187,134	(20.8)
Moderate effect	14,081 (1.6)	7,397 (0.8)	808 (0.1)	417 (0.0)	22,703	(2.5)
Major effect	1,268 (0.1)	1,938 (0.2)	56 (0.0)	97 (0.0)	3,359	(0.4)
Death	64 (0.0)	247 (0.0)	6 (0.0)	11 (0.0)	328	(0.0)
Unknown, non-toxic	167,399 (18.6)	4,702 (0.5)	1,422 (0.2)	463 (0.1)	173,986	(19.3)
Unknown, potentially toxic	56,007 (6.2)	21,070 (2.3)	1,545 (0.2)	1,441 (0.2)	80,063	(8.9)
Unrelated effect	13,003 (1.4)	732 (0.1)	722 (0.1)	222 (0.0)	14,679	(1.6)
Unknown	13,010 (1.4)	828 (0.1)	150 (0.1)	252 (0.0)	14,240	(1.6)
Total	809,817 (89.9)	73,781 (8.2)	11,912 (1.3)	5,003 (0.6)	900,513	(100.0)

TABLE 12. Therapy Provided in Human Poison Exposure Cases

	Number		Number
Initial decontamination		Pralidoxime (2-PAM)	91
Dilution	355,069	Cyanide antidote kit	47
Irrigation/washing	150,461	Dimercaprol (BAL)	147
lpecac syrup	134,905	Penicillamine	107
Activated charcoal	41,641	EDTA	48
Cathartic	33,694	Pyridoxine	78
Gastric lavage	12,372	Methylene blue	52
Other emetic	2,324	FAB fragments	117
Specific antidote administration		Hydroxocobalamin	164
N-acetylcysteine (PO)	2,743	Measures to enhance elimination	
Naloxone	2,189	Urinary alkalinization (with or without diuresis)	1,554
Antivenin/antitoxin	281	Forced diuresis	267
Atropine	388	Hemodialysis	217
Physostigmine	243	Urinary acidification (with or without diuresis)	58
Deferoxamine	404	Hemoperfusion (charcoal or resin)	56
Ethanol	322	Exchange transfusion	15
N-acetylcysteine (IV)	139	Peritoneal dialysis	19

TABLE 13. Ipecac Administration by Site and Age

Age	Site			
	Non-health-care Facility	Health-Care Facility	Unknown	Total
	Number (\%)	Number (\%)	Number (\%)	Number (\%)
<1 year	4,243 (3.1)	1,499 (1.1)	46 (0.1)	5,788 (4.3)
1 year	18,933 (14.0)	6,390 (4.7)	215 (0.2)	25,538 (18.9)
2 years	25,270 (18.7)	10,041 (7.4)	429 (0.3)	35,740 (26.5)
3 years	13,711 (10.2)	4,932 (3.7)	193 (0.2)	18,836 (14.0)
4 years	5,010 (3.7)	1,780 (1.3)	73 (0.0)	6,863 (5.1)
5 years	2,108 (1.6)	701 (0.5)	24 (0.0)	2.833 (2.1)
6-12 years	2,943 (2.2)	1,341 (1.0)	33 (0.0)	4,317 (3.2)
13-17 years	626 (0.5)	5,973 (4.4)	109 (0.1)	6,708 (5.0)
>17 years	3,997 (3.0)	16,902 (12.5)	306 (0.1)	21,205 (15.7)
Unknown	3,820 (0.8)	3,159 (2.3)	98 (0.0)	7,077 (5.3)
Total	80,661 (59.8)	52,718(39.1)	1.526 (0.9)	134,905 (100.0)

TABLE 14. Summary of Fatal Exposures

Case No.	Substance 1	Additional Substances	Age*	Route of Exposure \dagger	Reason \ddagger

See also cases $9,13,22,48,71,84,110,145,150,151,171,199,200,222,229,239,252,289,300-304,315,318$ (ethanol); 112 (isopropanol).

Automotive/aircraft/boat products					
9	Ethylene glycol	ethanol	25	ingestion	int suicide
10	Ethylene glycol		29	ingestion	int unk
11§	Ethylene glycol		59	ingestion	int suicide
12§	Ethylene glycol		77	ingestion	acc gen
13	Methanol	ethanol	>17	ingestion	int unknown
Chemicals					
14	Acetone	aspirin (adult)	55	ingestion	int suicide
$15 §$	Alkaline cyanide reagent		24	ingestion	int suicide
16	Cyanide	acid (battery)	22	ingestion	int suicide
17§	Cyanide		29	unknown	int suicide
18	Cyanide		35	ingestion	int suicide
19	Cyanide		>17	ingestion	int suicide
$20 \S$	Ethylene glycol		33	ingestion	int suicide
21	Ethylene glycol		39	ingestion	int unk
22	Hydrochloric acid	ethanol	60	ingestion	int suicide
23	Hydrochloric acid		85	ingestion	int suicide
24	Phenol	formaldehyde	31	dermal	acc occ
25§	Sodium azide		33	ingestion	int suicide
$26 \S$	Sodium azide		35	ingestion	int suicide
$27 \S$	Sodium azide		38	ingestion	int suicide
$28 \S$	Sodium hydroxide		45	dermal	acc oce
$29 §$	Sodium silicofluoride		86	ingestion	acc gen
30	Sulfuric acid (12N)		23	ingestion	int suicide
$31 \S$	Sodium nitrite		15	unknown	int abuse
See also case 8 (ethylene glycol).					
Cleaning Substances					
$32 \S$	Alkaline drain opener (crystals)		29	ingestion	int suicide
33	Isopropanol disinfectant		55	ingestion	int unknown

TABLE 14. Continued

$\begin{aligned} & \text { Case } \\ & \text { No. } \end{aligned}$	Substance 1	Additional Substances	Age*	Route of Exposure \dagger	Reason \ddagger
345	Lye		24	ingestion	int suicide
$35 §$	Perchloroethylene		45	inh and derm	acc occ
$36 \S$	Rust remover (HF)		29	ingestion	acc gen
37	Rust remover (HF)		>17	ingestion	int suicide
38	Trichloroethane		27	inhalation	int abuse
39	Window cleaner (methanol)		>17	ingestion	int unknown
See also case 133 (Lye).					
Cosmetics/Personal Care Products					
See also case 2 (acetone in nail polish remover).					
Dyes					
$40 §$	Tartrazine		65	ingestion	adv Pxn
Fumes/gases/vapors					
41	Carbon monoxide	other gases	14	inhalation	acc gen
42	Carbon monoxide		15	inhalation	int suicide
43	Carbon monoxide		17	inhalation	acc gen
44§	Carbon monoxide		20	inhalation	acc gen
45§	Carbon monoxide		20	inhalation	acc gen
48	Carbon monoxide		24	innaiation	unknown
47	Carbon monoxide		34	inhalation	unknown
48	Carbon monoxide	ethanol	35	inhalation	int suicide
$49 \S$	Carbon monoxide		36	Inhalation	acc gen
50	Carbon monoxide		38	inhalation	int suicide
51	Carbon monoxide		39	inhalation	acc occ
52	Carbon monoxide		40	inhalation	acc gen
53	Carbon monoxide		40	inhalation	ace occ
54	Carbon monoxide		47	inhalation	acc gen
55	Carbon monoxide		55	inhalation	int suicide
56	Carbon monoxide	amitriptyline nomifensine	58	inhalation	int suicide
57	Carbon monoxide		59	inhalation	acc gen
58	Carbon monoxide		59	inhalation	int suicide
59	Carbon monoxide		64	inhalation	acc gen
60	Carbon monoxide		65	inhalation	int suicide
61	Carbon monoxide		67	inhalation	int suicide
62	Carbon monoxide		72	inhalation	acc gen
63	Smoke inhalation		18 mo	inhalation	acc gen
64	Smoke inhalation	carbon monoxide	3	inhalation	acc gen
65	Smoke inhalation	carbon monoxide	4	inhalation	acc gen
66	Methane		3	inhalation	acc gen
Heavy Metals 02 ingestion int suicid					
67	Arsenic		62	ingestion	int suicide
685	Arsenic trioxide		32	ingestion	int suicide
$69 \S$	Arsenic trioxide		40	ingestion	int unknown
Herbicides					
$70 §$	Paraquat		40	ingestion	acc gen
$71 \S$	Paraquat	ethanol	39	ingestion	int suicide
Hydrocarbons					
$72 §$	Freon		16	inhalation	int abuse
73	Freon		33	inhalation	int suicide
74	Freon		>17	inhalation	ace oce
$75 §$	Kerosene (Lamp oil)		12 mo	ingestion	acc gen
$76 §$	Mineral spirits (paint thinner)		89	ingestion	acc gen
77	Toluene		53	derm and inh	acc occ
78	Toluene		53	derm and inh	acc occ
79	Toluene		>17	derm and inh	acc occ
808	Trichloroethane		12	unknown	int abuse
818	Trichloroethane		13	unknown	int abuse
Insecticides/pesticides (excluding rodenticides)					
82§	Chlorpyrifos	phenylpropanolamine	27	inhalation	acc occ
83§	Diazinon		29	ingestion	int suicide

TABLE 14. Continued

$\begin{aligned} & \text { Case } \end{aligned}$	Substance 1	Additional Substances	Age*	Route of Exposure \dagger	Reason \ddagger
84	Diazinon	ethanol	>17	ingestion	int suicide
$85 §$	Fonofos		15 mo	ing and derm	acc gen
86	Malathion		84	ingestion	int suicide
$87 \S$	Mosquito repellant (DEET)		33	ingestion	int suicide
$88 \S$	Organophosphate (unknown type)		26 mo	ing and derm	acc gen
89	Pesticide (unknown)		2	ingestion	acc gen
$90 §$	Sodium fluoride (roach killer)		30	ingestion	int suicide
Mushrooms					
$91 \S$	Cyclopeptide mushrooms		27	ingestion	acc gen
$92 §$	Cyclopeptide mushrooms		31	ingestion	acc gen
$93 \S$	Cyclopeptide mushrooms		38	ingestion	acc gen
$94 \S$	Cyclopeptide mushrooms		42	ingestion	acc gen
Paints and stripping agents					
95	Paint remover (methylene chloride/methanol)		14	ingestion	unknown
96	Paint remover (above + toluene)		22	inhalation	acc gen
97§	Furniture refinisher (methanol)		38	ingestion	int suicide
Plants					
$98 §$	Conium maculatum (poison hemlock)		5	ingestion	acc gen
99§	Cicuta maculata (water hemlock)		>17	ingestion	acc gen
Sporting Equipment					
100	Gun bluing		2	ingestion	acc gen
101§	Gun bluing		15 mo	ingestion	acc gen
Analgesics					
102	Acetaminophen (adult)		24	ingestion	int suicide
103	Acetaminophen (adult)		26	ingestion	int suicide
104	Acetaminophen (adult)		27	ingestion	int suicide
105	Acetaminophen (adult)		38	ingestion	int suicide
106	Acetaminophen (adult)		52	ingestion	int unknown
107	Acetaminophen (adult)		52	ingestion	int suicide
108§	Acetaminophen (adult)	acetaminophen/ diphenhydramine	38	ingestion	int suicidel ${ }^{\text {l }}$
109	Acetaminophen (adult)	aspirin/ acetaminophen	19	ingestion	int suicide
110	Acetaminophen (adult)	ethanol	49	ingestion	int suicide
111	Acetaminophen (adult)	ibuprofen naproxen	33	ingestion	int suicide
112	Acetaminophen (adult)	isopropanol	58	ingestion	int suicide
113	Acetaminophen/codeine		42	ingestion	int abuse
114	Acetaminophen/codeine	chlordiazepoxide	43	ingestion	int suicide
115	Acetaminophen/oxycodone	amitriptyline/perphenazine ibuprofen	42	ingestion	int suicide
116	Acetaminophen/propoxyphene	imipramine diazepam	31	ingestion	int suicide
117	Aspirin (adult)		19	ingestion	int suicide
118	Aspirin (adult)		50	ingestion	int suicide
119	Aspirin (adult)		60	ingestion	int unknown ${ }^{\prime \prime}$
120	Aspirin (adult)		62	ingestion	int unknown
121	Aspirin (adult)		65	ingestion	acc gen ${ }^{\text {l }}$
122	Aspirin (adult)		70	ingestion	int suicide
123	Aspirin (adult)		70	ingestion	int suicide
124	Aspirin (adult)		73	ingestion	unknown
125	Aspirin (adult)		80	ingestion	int suicide
126	Aspirin (adult)		81	ingestion	int unknown
127	Aspirin (adult)	acetaminophen	50	ingestion	unknown
128	Aspirin (adult)	acetaminophen (adult)	54	ingestion	int suicide
129	Aspirin	alprazolam	46	ingestion	int suicide
$130 §$	Aspirin (adult)	amoxapine	26	ingestion	int suicide
131	Aspirin	diphenhydramine	43	ingestion	int suicide
132	Aspirin	ibuprofen acetaminophen	76	ingestion	int suicide
133	Aspirin (adult)	lye	59	ingestion	int suicide
134	Aspirin (adult)	thiothixene benztropine	20	ingestion	int suicide

TABLE 14. Continued

Case No.	Substance 1	Additional Substances	Age*	Route of Exposure \dagger	Reason \ddagger
135	Aspirin/propoxyphene		18	ingestion	int suicide
136	Aspirin/propoxyphene		35	ingestion	int suicide
137	Aspirin/propoxyphene	phentermine	60	ingestion	int suicide
138	Codeine	unknown drug	20	ingestion	int suicide
139§	Colchicine		13	ingestion	int suicide
140§	Colchicine		42	ingestion	int abuse
141§	lbuprofen		64	ingestion	int suicide
142§	Meperidine/promethazine/ chlorpromazine	lidocaine/epinephrine	6	parenteral	adv rxn
143	Meperidine		22	ingestion	int suicide
144	Methadone	ibuprofen aspirin	37	ingestion	int suicide
145	Morphine	ethanol	36	ing and paren	int abuse
146	Morphine		86	parenteral	acc misusel
147	Pentazocine	benzodiazepines trazodone	61	ingestion	unknown
148	Propoxyphene		15	ingestion	int suicide
149	Propoxyphene	aspirin/codeine acetaminophen	28	ingestion	int suicide
150	Propoxyphene	ethanol	19	ingestion	int unknown
151	Propoxyphene	ethanol	24	ingestion	int suicide
152	Propoxyphene	trazodone acetaminophen/propoxyphene	67	ingestion	int suicide
153	Salsalate		>17	ingestion	acc gen ${ }^{\prime \prime}$

See also cases 159 (acetaminophen); 201, 253, 267-271 (acetaminophen/codeine); 280 (acetaminophen/propoxyphene); 14, 170, 179, 180, 186, 212, 253 (aspirin); 250 (aspirin/propoxyphene); 272, 273, 174 (codeine); 250 (hydrocodone); 264 (hydromorphone); 240 (ibuprofen); 172 (methadone); 229 (naproxen); 202 (propoxyphene); 159 (sulindac).
Anesthetics

154	Halothane
$155 \S$	Lidocaine (viscous)
156	Nitrous oxide

14 mo	inhalation	acc gen
2	ingestion	acc misusell
28	inhalation	int abuse

See also case 142 (lidocaine/epinephrine).
Anticholinergics

157	Benztropine
158	Trihexyphenidyl

lithium
perphenazine
lithium

25
28
ingestion
int suicide lithium
ingestion int suicide

See also cases 134, 277 (benztropine); 185 (biperiden); 221 (trihexyphenidyl).
Anticonvulsants

159	Carbamazepine
160	Carbamazepine
161	Methsuximide

sulindac
acetaminophen
metoprolol
loxapine

15	ingestion	int suicide
41	ingestion	int suicide
41	ingestion	int suicide

See also case 284 (carbamazepine, phenytoin).

Antidepressants	
162	Amitriptyline
163	Amitriptyline
164	Amitriptyline
165	Amitriptyline
166	Amitriptyline
167	Amitriptyline
168	Amitriptyline
169	Amitriptyline
$170 \S$	Amitriptyline
171	Amitriptyline
172	Amitriptyline

	18	ingestion	int suicide
	19	ingestion	int suicide
	35	ingestion	int suicide
	80	ingestion	int suicide
	>17	ingestion	int suicide
barbiturates	87	ingestion	int suicide
haloperidol			
chlordiazepoxide	50	ingestion	int suicide
diphenhydramine	48	ingestion	int suicide
doxepin	24	ingestion	int suicide
aspirin			
ethanol	27	ingestion	int suicide
methadone	20	ingestion	int suicide
imipramine			

TABLE 14. Continued

Case No.	Substance 1	Additional Substances	Age*	Route of Exposure \dagger	Reason \ddagger
173	Amitriptyline	perphenazine	>17	ingestion	int suicide
174	Amitriptyline	propranolol codeine	>17	ingestion	int suicide
175	Amitriptyline	thiothixene	37	ingestion	int suicide
176	Amitriptyline/chlordiazepoxide		36	ingestion	int suicide
177	Amitriptyline/perphenazine		55	ingestion	int suicide
178	Amitriptyline/perphenazine		>17	ingestion	int suicide
179	Amitriptyline/perphenazine	aspirin	20	ingestion	int suicide
180	Amltriptyline/perphenazine	methypryion aspirin	81	ingestion	int suicide
181	Amoxapine		14	ingestion	int suicide
$182 \S$	Amoxapine		18	ingestion	int suicide
183	Amoxapine		48	ingestion	int suicide
184	Amoxapine	loxapine	25	ingestion	int suicide
185	Amoxapine	loxapine biperiden	36	ingestion	int suicide
$186 \S$	Amoxapine	thiothixene aspirin	60	ingestion	int suicide
187	Amoxapine	triazolam	39	ingestion	int suicide
188	Desipramine		15	ingestion	int suicide
189	Desipramine		20	ingestion	int suicide
190	Desipramine		22	ingestion	int suicide
191	Desipramine		27	ingestion	int suicide
192	Desipramine	fluphenazine	54	ingestion	int suicide
193	Desipramine	maprotiline	17	ingestion	int suicide
194	Desipramine	methyprylon alprazolam	29	ingestion	int suicide
195	Desipramine	propranolol	50	ingestion	int suicide
196	Doxepin		22	ingestion	int suicide
197	Doxepin		27	ingestion	int suicide
$198 §$	Doxepin	desipramine	27	ingestion	int suicide
199	Doxepin	ethanol	20	ingestion	int suicide
200	Doxepin	ethanol	38	ingestion	int suicide
201	Doxepin	pentobarbital acetaminophen/codeine	40	ingestion	int suicide
202	Doxepin	propoxyphene diazepam	48	ingestion	int suicide
$203 \S$	Imipramine		18 mo	ingestion	acc gen
204	Imipramine		14	ingestion	int suicide
205	Imipramine		20	ingestion	int suicide
206	Imipramine		23	ingestion	int suiclde
207	Imipramine		30	ingestion	int suicide
208	Imipramine		32	ingestion	int suicide
209	Imipramine	alprazolam loxapine	34	ingestion	int suicide
210	Imipramine	alprazolam trifluoperazine	41	ingestion	int unknown
211	Imipramine	amitriptyline	19	ingestion	int suicide
212	Imipramine	aspirin chlorpheniramine/ phenylephrine	13	ingestion	int suicide
213	Imipramine	lithium trifluoperazine	19	ingestion	int suicide
214	Imipramine	phenelzine alprazolam	41	ingestion	int suicide
215	Imipramine	thioridazine chlorpropamide	64	ingestion	int suicide
216	Lithium		35	ingestion	acc misusell
$217 \S$	Lithium		55	ingestion	int suicide
218	Lithium		57	ingestion	acc genll
$219 \S$	Lithium	haloperidol	20	ingestion	acc misuse ${ }^{i i}$
$220 \widehat{3}$	Loxapine		27	ingestion	int suicide

TABLE 14. Continued

Case No.	Substance 1	Additional Substances	Age*	Route of Exposure \dagger	Reason \ddagger
221	Loxapine	trihexyphenidyl	62	ingestion	int suicide
222	Maprotiline	amitriptyline ethanol	34	ingestion	int suicide
223	Nortriptyline		26	ingestion	int suicide
224	Nortriptyline		52	ingestion	int suicide
$225 \S$	Phenelzine		27	ingestion	int suicide
226	Phenelzine	alprazolam	38	ingestion	int suicide
227	Trazodone		64	ingestion	int suicide

See also cases $56,276,286$ (amitriptyline); 115 (amitriptyline/perphenazine); 130 (amoxapine); 116 (imipramine); 157, 158 (lithium); 160 (loxapine); 56 (nomifensine); 147, 152, 255 (trazodone).
Antihistamines

		20	ingestion	int suicide
228	Diphenhydramine	ethanol	20	ingestion
229	Diphenhydramine suicide			

See also cases 131, 169, 239 (diphenhydramine).

Asthma Therapies 00 ingestion					
230	Oxytriphylline		60	ingestion	acc gen
231	Theophylline (long-acting)		13	ingestion	int suicide
232	Theophylline		19	ingestion	int suicide
233	Theophylline		45	ingestion	int suicide
234	Theophylline		71	ingestion	acc gen
235	Theophylline		71	ingestion	acc gen
236	Theophylline		86	ingestion	int suicide
237	Theophylline (long-acting)		>17	ingestion	int suicide
238	Theophylline (long-acting)		>17	ingestion	int suicide
239	Theophylline	diphenhydramine ethanol	30	ingestion	int suicide
240	Theophylline	ibuproten	54	ingestion	int misuse
Cardiovascular Drugs 24 ingestion adv rxnll					
241	Digoxin		24	ingestion	adv rxn"
242	Digoxin		75	parenteral	acc misuse
243	Digoxin		84	ingestion	int suicide
$244 \S$	Digoxin		88	ingestion	int unknown
$245 \S$	Nifedipine		1	ingestion	acc gen
246	Prazosin	trifluoperazine	19	ingestion	int suicide
247§	Propranolol		18	ingestion	int suicide
248	Propranolol		18	ingestion	int suicide
249	Propranolol		38	ingestion	int suicide
250	Propranolol	aspirin/propoxyphene hydrocodone	21	ingestion	int suicide
251	Propranolol	cimetidine	47	ingestion	int suicide
252	Propranolol	ethanol	34	ingestion	int suicide
253	Quinidine	acetaminophen/codeine clonidine aspirin	15	ingestion	int suicide
254	Quinidine	nitroglycerin	68	ingestion	int suicide
255	Quinidine (long acting)	trazodone	>17	ingestion	int suicide
256	Verapamil		79	ingestion	adv rxn ${ }^{\text {II }}$

See also case 160 (metoprolol), 174, 195 (propranolol)
Cough and Cold Preparations
See also case 258 (phenylpropanolamine/chlorpheniramine syrup); case 212 (chlorpheniramine/phenylephrine).

Electrolytes/minerals				
257§ Ferrous sultate	phenylpropanolamine/ chlorpheniramine syrup	3	ingestion	acc gen
$258 \S$ Sodium bicarbonate		20 mo ingestion		acc misuse
Gastrointestinal Preparations		13	ingestion	int suicide
259§ Loperamide	phenobarbital			
See also case 251 (cimetidine).				

TABLE 14. Continued

$\begin{aligned} & \text { Case } \\ & \text { No. } \end{aligned}$	Substance 1	Additional Substances	Age*	Route of Exposure \dagger	Reason \ddagger
Hormones and Hormone Antagonists					
See case 215 (chlorpropamide).					
Muscle Relaxants					
$260 §$	Cyclobenzaprine		15	ingestion	int suicide
Sedative/hypnotics					
261	Alprazolam		58	ingestion	int suicide
262	Barbital		24	ingestion	int suicide
263	Chloral hydrate		74	ingestion	int unknown
264	Chloral hydrate	hydromorphone	78	ingestion	int suicide
265§	Chlorpromazine		9 mo	ingestion	acc gen
266	Diazepam		38	parenteral	adv rxn
267	Glutethimide	acetaminophen/codeine	24	ingestion	int abuse
268	Glutethimide	acetaminophen/codeine	24	ingestion	int abuse
269	Glutethimide	acetaminophen/codeine	25	ingestion	int abuse
270	Glutethimide	acetaminophen/codeine	30	ingestion	int abuse
271	Glutethimide	acetaminophen/codeine	37	ingestion	int abuse
272	Glutethimide	codeine	25	ingestion	int abuse
273	Glutethimide	codeine	29	ingestion	int suicide
274§	Haloperidol		25	ingestion	int suicide
275	Haloperidol		96	ingestion	adv rxn"
276	Haloperidol	amitriptyline amphetamines	41	ingestion	int unknown
277	Haloperidol	benztropine	43	ingestion	int suicide
278	Haloperidol	oxazepam thiothixene	52	ingestion	int suicide
279	Meprobamate		>17	ingestion	acc gen
280	Meprobamate	propoxyphene/acetaminophen diazepam	41	ingestion	acc misuse
281	Pentobarbital		21	ingestion	int suicide
282	Phenobarbital		22	ingestion	int suicide
283	Phenobarbital		60	ingestion	int suicide
284	Phenobarbital	carbamazepine phenytoin	26	ingestion	int suicide
285§	Thioridazine		48	ingestion	int suicide
286	Thiothixene	alprazolam amitriptyline	34	ingestion	int suicide
287	Trifluoperazine		50	ingestion	int suicide

See also cases 129, 194, 209, 210, 214, 226 (alprazolam); 167 (barbiturates); 147 (benzodiazepines); 114, 168 (chlordiazepoxide); 116 , 202, 305 (diazepam); 192 (fluphenazine); 167, 219 (haloperidol); 180, 194 (methyprylon); 201 (pentobarbital); 158, 173 (perphenazine); 259 (phenobarbital); 308 (thiopental); 215 (thioridazine); 175, 186 (thiothixene); 187 (triazolam); 134, 210, 213, 246 (trifluoperazine).

TABLE 14. Continued

Case No.	Substance 1	Additional Substances	Age*	Route of Exposure \dagger	Reason \ddagger
305	Cocaine	heroin diazepam	21	ing and par	int abuse
306	Cocaine	marijuana	31	ing and inh	int abuse
307	Cocaine	phenylpropanolamine	22	ingestion	int unknown
308	Cocaine	thiopental	21	parenteral	int abuse
309	Heroin		23	parenteral	int abuse
310	Heroin		25	parenteral	int abuse
311	Heroin		30	parenteral	int abuse
312	Heroin		30	parenteral	int abuse
313	Heroin		31	parenteral	int abuse
314	Heroin		36	parenteral	int abuse
315	Heroin	ethanol	28	parenteral	int abuse
$316 \S$	MDMA		18	unknown	int unknown
317	Opiate derivative		25	parenteral	int abuse
318	"Speed"	ethanol	49	ingestion	int abuse
319	Street drugs (caffeine)		17	ingestion	int abuse
320	Street drug (fentanyl?)		35	parenteral	int abuse
321	Unidentified street drugs		24	ingestion	int abuse
322	Unidentified street drug		30	parenteral	int abuse
323	Unidentified street drugs		31	ingestion	int abuse

See also cases 276 (amphetamines); 137 (phentermine); 82 (phenylpropanolamine).

Topicals			
324§ Hexachlorophene	>17	ingestion	acc gen
$325 §$ Oil of wintergreen	30	ingestion	int suicide
$326 §$ Oil of wintergreen	37	ingestion	int misuse
Unknown Drug			
See case 138 (unknown drug).			
Veterinary Drugs			
327 Nicotine alkaloids	21	ingestion	unknown
328 Pentobarbital/phenytoin	22	parenteral	int unknown

[^2]versed among the adult deaths, with 3.9 times as many deaths resulting from intentional as compared with accidental exposures (Table 6).

Ingestions accounted for 79.2% of poison exposures (Table 7), followed in frequency by dermal exposure, ophthalmic exposure, inhalation, bites and stings, and parenteral exposure. The 328 fatalities included 250 ingestions (76.2%), 37 inhalational exposures (11.3%), 21 parenteral exposures (6.4%), two dermal exposures (0.0%), and seven unknown exposure routes (2.1\%). In addition, 11 victims (3.4\%) had multiple exposure routes.
Table 8 displays the symptom assessment at the time of the initial call to the participating poison center. In addition to the 24.9% of patients with symptoms clearly related to the exposure, symptoms
developed during the subsequent course in 19,173 initially asymptomatic patients. Thus, symptoms definitely related to the exposure eventually developed in 27.0% of patients.

The majority of cases reported to poison centers were managed in a non-health care facility (74.9%), usually at the site of exposure, the patient's own home (Table 9). Treatment in a health care facility was rendered or recommended in 22.1% of all cases, and of these 51.7% involved treatment and release, 17.2% involved admission for medical treatment, and 2.2% involved admission for psychiatric care; 9.0% refused referral, and 19.8% were lost to follow-up.

Table 10 displays the medical outcome of the human poison exposure victims distributed by age and emphasizes the more severe outcome observed in the
TABLE 15. Demographic Profile of Exposure Cases by Generic Category of Substances and Products: Non-pharmaceuticals

$0 \quad$ - O~
$\infty \quad \infty$ ㅇN

品

TABLE 15. Continued

	Number of Exposures	Age (years)*			Reason*			Treated in Health Facility	Medical Outcome (Effect)* \dagger				
		<6	6-17	>17	Accs	Ints	Rxn§		None	Minor	Moderate	Major	Death
Laundry detergents													
Anionic/nonionic	3,528	2,844	139	483	3,496	16	9	308	1,681	963	39	0	0
Alkali	1,004	870	28	88	994	4	3	185	477	293	24	3	0
Other/unknown	1,330	1,099	44	160	1,312	14	2	139	630	278	21	1	0
Miscellaneous cleaners													
Acid	978	524	46	364	958	16	0	238	394	326	29	3	0
Alkali	8,710	4,557	701	3,140	8.517	172	11	2,695	3,002	3,030	449	44	3
Anionic/nonionic	10,011	7,964	407	1,455	9,803	83	107	941	4,447	2,066	74	2	0
Cationic	2,528	1,704	169	593	2,456	64	5	472	1,175	614	45	3	0
Methanol/glycols	185	137	12	30	181	4	0	39	93	42	1	0	0
Isopropanol	1,634	1,252	87	279	1,533	98	0	336	795	304	26	6	0
Ethanol	981	787	55	128	934	44	1	92	491	202	10	3	0
Other/unknown	1,585	1,025	87	397	1,553	21	2	326	710	335	45	3	0
Alkali	1,966	710	133	1,008	1,942	18	4	692	390	1,018	152	7	0
Other/unknown	141	41	15	81	137	3	1	57	20	58	11	1	0
Hydrofluoric acid	307	56	13	229	296	11	0	220	36	142	60	3	2
Other acid	176	55	12	100	169	7	0	72	46	82	13	0	0
Other/unknown	60	22	4	28	59	1	0	21	15	30	1	0	0
Spot remover/dry													
Acid	1,654	837	119	637	1,594	56	0	448	597	603	68	7	0
Other/unknown	376	272	16	77	369	7	0	66	217	63	6	0	0
Alkali	1,429	738	66	581	1.405	21	2	404	405	590	48	3	0
Anionic/nonionic	902	684	37	161	888	11	0	115	457	205	8	0	0
Glycols	442	362	17	50	439	2	0	51	240	88	7	1	0
Other/unknown	573	319	35	189	558	15	0	163	223	188	14	3	0
Total	85,326	55,108	5,101	22,623	83,587	1,372	187	16,161	34,660	25,173	2,228	149	9
Cosmetics/personal care products													
Bath oil/bubble bath Creams, lotions, make-up	1,213	1,138	40	25	1,203	3	1	45	663	160	3	0	0
	3,325	2,895	127	245	3,270	29	22	182	1,797	273	9	2	0
Dental care products	953	747	84	96	929	10	8	77	431	182	6	0	0
Deodorants	3,578	3,204	124	200	3,554	20	1	140	1,910	479	16	0	0
Depilatories	39	14	4	17	38	1	0	8	18	41	1	0	0
Douches	110	75	6	24	103	4	3	18	63	7	0	0	0
Eye products	1.066	910	35	100	1,062	1	3	53	557	99	2	0	0
Hair care products	7,908	6,533	394	825	7,770	90	35	618	3,869	1,572	86	5	0
Mouthwash	2,225	1,609	377	197	2.150	70	2	248	1,264	333	22	3	0
Nail polish	1,777	1,598	93	55	1,755	18	1	108	951	427	11	0	0
Nail polish removers	4,181	3,586	217	310	4,075	95	2	590	2,544	652	12	0	1
Nail products,													
Perfume/cologne/													
Peroxide	889	550	72	233	864	19	5	84	, 395	201	10	2	0
Powders	1,994	1.820	63	91	1,976	12	3	185	1,026	448	6	0	0

TABLE 15. Continued

	NumberofExposures	Age (years)*			Reason*			Treated in Health Facility	Medical Outcome (Effect)* \dagger						
		<6	6-17	>17	Acç	mis	$\underset{\substack{\text { Axn }}}{\text { dr }}$		None	Minor	Moderate	Major	Death		
Herbicides															
2,4-D or 2,4,5-T	1,189	482	108	563	1,167	15	2	294	429	274	32	3	0		
Diquat/paraquat	179	29	13	129	171	7	1	112	56	41	9	3	2		
Other/unknown	1,781	537	191	953	1,756	15	4	520	541	484	54	5	0		
Total	3,149	1,048	312	1,645	3,094	37	7	926	1,026	799	95	11	2		
Hydrocarbons															
Benzene	112	41	4	62	109	3	0	56	33	48	4	1	0		
Diesel fuel	1,883	658	269	840	1.830	48	1	508	593	795	42	2	0		
Kerosene	2,302	1,710	126	410	2,287	10	0	735	1,067	682	55	8	1		
Lighter fluid/naphtha	1,013	801	57	136	993	18	0	268	525	249	26	4	0		
Lubricating/motor oils	1,343	1,064	75	166	1,336	6	0	156	824	198	11	0	0		
Mineral seal oil	769	704	21	35	749	18	1	144	524	79	13	3	0		
Mineral spirits/varsol	2,441	1,567	183	606	2,401	32	2	483	1,125	681	52	2	1		
Toluene/xylene	3,247	1,852	323	956	3,133	98	4	782	1,206	1,034	83	10	3		
Turpentine	1,242	779	120	320	1,169	59	4	393	517	379	26	5	0		
Other/unknown	18,550	12,828	1,122	4,137	18,154	336	22	4,244	8,852	4,589	377	29	0		
Total	45,362	25,775	4,505	13,620	44,243	961	38	10,216	19,324	13,891	960	81	10		
Insecticides/pesticides (Excluding rodenticides)															
Borates/boric acid	1.538	1,176	65	262	1,488	46	1	337	934	156	14	0	0		
Carbamates	4,504	2,557	307	1,492	4,299	55	134	863	1,991	841	130	14	0		
Metaldehyde	204	166		27	199	5	0	35	120	13	2	0	0		
Organophosphate alone	7,266	2,801	616	3,526	7,026	148	66	2,038	2,675	1,958	286	48	6		
Organophosphate and carbamate	1.773	824	148	736	1.716	48	3	370	722	457	50	2	0		
Organophosphate and chlorinated hydrocarbon	208	76	12	108	201	7	0	65	87	51	6	3	0		
Organophosphate and other pesticide	376	180	32	142	358	13	4	126	130	122	17	2	0		
Piperonyl butoxide alone	310	168	29	103	300	7	3	70	122	122 97	5	1	0		
Piperonyl butoxide and pyrethrins	1.532	670	145	621	1.493	24	11	391	582	423	44	3	0		
Pyrethrins alone	173	67	18	66	171	4	11	57	52	56	4	1	0		
Insect repellents	1,214	974	132	86	1,203	6	3	88	579	369	9	0	1		
Other/unknown	3,704	1,630	303	1,570	3,599	68	21	826	1,588	871	86	6	2		
Total	26,171	13,182	2,101	9,795	25,307	498	265	6,154	11,175	6,047	729	99	9		
Lacrimators	2,146	758	594	657	2,069	55	7	472	269	1,467	63	1	0		
Matches/fireworks/															
Moth repellents															
Naphthalene	1,347	1,169	52	103	1,328	5	10	244	950	103	13	4	0		
Paradichlorobenzene	1,142	1,011	53	60	1,139	0	1	141	770	72	6	0	0		
Other/unknown	744	647	42	35	738	5	1	113	529	40	3		0		
Total	3,233	2,827	147	198	3,205	10	12	498	2,249	215	22	4	0		
Mushrooms	7,245	6,068	404	663	6,929	262	41	1,318	5,043	732	159	18	4		
Paints and stripping agents	10,633	6,911	808	2,577	10,454	144	14	1,560	4,767	2,160	184	20	3		

0

历		\bar{N}^{8}			$8 \times$
の	-000\%	\ldots		-r**m	$\infty \cong$
\pm		8			$\bigcirc \pm$

 ㅅ п

Photographic products
Plants
Anticholinergic
Cardiac glycosides
Colchicine
Cyanogenic glycosides
Depressants
Dermatitis
Gastrointestinal
irritants
Hallucinogenic
Nicotine (no
tobacco products)
Non-toxic plant
Oxalate
Solanine
Stimiants
Toxalbumins
Other/unknown
Total
Polishes and waxes
Radio-isotopes
Rodenticides
Anticoagulants
Strychnine
Other/unknown
Total
Sporting equipment
Swimming pool/
aquarium products
Tobacco products
Unknown non-drug
substances

[^3]TABLE 16. Demographic Profile of Exposure Cases by Generic Category of Substance: Pharmaceuticals

	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Exposures } \end{aligned}$	Age (years)*			Reason* \dagger				Medical Outcome (Effect)*§				
		<6	6-17	>17	Acc	mt	Rxn		None	Minor	Moderate	Major	Death
Analgesics													
Acetaminophen only													
Adult formulation	12,100	3,773	3,349	4,442	5,725	6,090	72	7,340	5,211	1,842	458	143	6
Pediatric formulation	24,980	24,054	661	111	24,725	190	43	3,271	16.482	788	27	2	0
Unknown type	3,604	2,368	492	676	2,727	806	34	1,185	1,698	378	103	26	0
Acetaminophen in combination with:													
Aspirin	128	61	27	33	80	48	0	52	55	26	3	0	4
Codeine	3,961	682	589	2,500	1,483	2,196	200	2,595	946	1,219	229	58	9
Oxycodone	855	125	83	603	350	430	53	531	192	243	60	15	1
Propoxyphene	1,534	261	189	1.021	544	929	30	1,146	395	449	115	46	4
Other narcotic/ analog	804	282	107	381	462	277	39	394	241	218	43		0
Other drug	2,703	1,147	466	1,003	1,542	1,055	54	1,368	1,070	632	110	20	5
Aspirin only 20													
Adult formulation	6.425	1.813	1.926	2.343	2,892	3,378	61	3,772	2,232	1,393	369	59	10
Pediatric formulation	3.098	2,854	168	51	2,987	93	10	558	1,952	246	13	2	0
Unknown type	3,522	1,570	773	1,071	2,183	1,229	33	1,543	1,390	721	148	37	0
Aspirin in combination with:													
Codeine	746	134	104	475	277	423	31	498	165	217	70	10	1
Oxycodone	660	128	65	435	269	348	26	420	162	195	51	6	0
Other narcotic/ analog	532	103	90	315	223	258	35	324	124	152	29	1	4
Other drug	4,257	1,520	1,049	1,526	2,183	1,909	75	2,285	1,622	1,121	164	33	13
Narcotics													
Codeine	1,178	687	145	323	846	276	43	465	469	292	51	8	4
Pentazocine	254	35	27	175	99	118	30	168	44	74	29	8	1
Propoxyphene	603	75	60	426	194	367	22	441	114	159	53	21	5
Other/unknown	197	28	13	126	71	106	12	132	27	47	21	7	8
Non-aspirin salicylates	309	236	16	49	276	28	4	72	167	49		0	1
$\begin{aligned} & \text { Non-steroidal } \\ & \text { antiinflammatory drugs } \end{aligned}$													
Ibuprofen	6,510	3,782	764	1.793	4,446	1,872	114	2,380	3,357	950	132	26	6
Other/unknown	1,403	675	162	491	939	380	69	560	649	280	52	10	5
Other/unknown	598	417	51	108	479	98	13	220	297	99	13	4	0
Total	80,961	46,810	11,376	20,477	56,002	22,904	1,103	31,720	39,061	11,790	2,349	551	87
Anesthetics	2.517	1,838	217	407	2,350	113	44	393	1,328	387	39	9	4
Anticholinergic	4,617	2,050	645	1,761	2,896	1,540	104	2,356	1,831	1,133	265	52	6
Anticoagulants	933	736	32	137	858	65	5	269	524	57	7	1	0
Anticonvulsants													
Phenytoin	1,980	564	232	1,074	1,122	747	58	1,267	598	539	201	44	1
Other/unknown	1,413	581	255	525	963	400	27	772	550	328	124	42	4
Total	3,393	1,145	487	1,599	2,085	1,147	85	2,039	1,148	867	325	86	5
Antidepressants													
Cyclic antidepressants													
Amitriptyline	2,704	398	259	1,880	881	1,692	52	2,215	455	705	498	245	19
Amoxapine	312	34	39	220	102	200	4	262	54	90	42	34	8
Desipramine	490	96	55	318	192	278	12	374	122	144	65	32	9
Doxepin	1,367	121	112	1.067	335	970	19	1,149	195	384	250	119	8
Imipramine	1,323	316	193	753	565	697	35	990	339	385	176	71	15
Maprotiline	319	45	32	222	100	202	7	256	53	103	37	19	2

IABLE 16. Continued

	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Exposures } \end{aligned}$	Age (years)*			Reason* \dagger				Medical Outcome (Effect) ${ }^{\text {a }}$				
		<6	6-17	>17	Ace	int	R×n		None	Minor	Moderate	Maior	Death
Fluoride (excluding vitamins)	3,139	2,846	181	72	3,093	26	10	266	1,597	526	21	2	0
Iron (excluding vitamins)	2,013	1.483	192	286	1,739	252	8	905	971	421	75	15	1
Magnesium salts	284	231	11	37	271	9	4	39	144	48	4	,	0
Potassium salts	549	357	60	116	478	61	7	168	294	86	12	1	0
Sodium salts	1,760	1,362	157	212	1,718	26	5	227	959	249	14	1	1
Zinc	989	628	52	270	952	27	9	217	473	196	30	0	0
Other/unknown	77	44	6	26	70	5	2	15	38	10	2	0	0
Total	14.933	12,594	822	1,283	14,349	466	67	2.014	7,830	1.753	169	23	2
Eye/ear/nose/throat preparations	6,994	5,247	592	993	6,492	417	60	1,561	4,019	1,117	92	13	0
Gastrointestinal preparations													
Antacids	4,087	3,374	281	359	3,813	235	18	461	2,311	342	25	7	1
Antidiarrheals/ antispasmodics	1,678	1,011	196	411	1,219	398	42	935	740	378	106	17	1
Laxatives	12,999	11,105	688	1,047	12,593	314	53	1,147	6,372	2,082	133	10	0
Other/unknown	854	595	64	174	722	91	33	186	394	104	18	0	0
Total	19,618	16,085	1,229	1,991	18,347	1,038	146	2,729	9,817	2,906	282	34	2
Hormones and hormone antagonists Corticosteroids													
Corticosteroids	283	208	24	32	259	12	8	18	192	11	${ }^{2}$		0
Insulin	232	31	20	169	137	75	19	127	74	43	16	6	0
Oral contraceptives	6,068	5.572	275	159	5,865	168	16	432	3,278	230		0	0
Oral hypogiycemics	507	288	47	161	406	90	6	291	272	87	24	6	1
Thyroid preparations	1,829	1,442	112	243	1,662	146	14	464	1,100	139	34	3	0
Other/unknown	1,908	1,225	153	476	1,699	156	36	435	906	338	32	2	0
Total	10,827	8,766	631	1,240	10,028	647	99	1,767	5,822	848	116	18	1
Miscelianeous drugs													
Allopurinol	143	92	21	27	118	21	3	40	93	11	2	0	0
L-dope and related arugs	113	62	5	45	93	18	2	42	47	21	4	4	0
Disulfiram	498	37	20	413	189	248	47	355	80	166	59	3	0
Ergot alkaloids	360	179	46	126	256	72	29	164	160	86	10		
Homeopathic/herbal preparations	371	221	28	110	304	38	24	102	149	61	8	1	0
Other	1,397	913	140	287	1,189	161	40	244	536	358	27	1	0
Tota!	2,874	1,504	260	1,004	2,146	556	143	941	1,065	699	110	-	0
Muscle relaxants	1,976	399	243	1,225	801	1,069	49	1,369	468	601	203	42	1
Sedative/hypnotics/ antipsychotics Barbiturates													
Long-acting Short/	2,760	781	379	1,464	1,434	1,226	37	1,766	742	770	306	125	5
intermediate-acting	1,303	180	159	856	411	821	17	988	232	448	153	48	3
Unknown type	27	3	4	15	9	15	0	22	2	4	6	7	1
Benzodiazepines	15,092	2,404	1,222	10,506	4,793	9,691	183	10.584	2,655	5.186	1,377	297	18
Chioral hydrates	225	65	10	136	98	113	10	166	30	73	28	12	2
Ethchioryynol	258	17	11	216	50	196	2	223	15	83	43	29	0
Glutethimide	194	9	9	170	28	160	2	171	14	62	46	26	7
Meprobamate	433	59	51	302	145	262	6	317	73	136	81	18	2

OONN	0	000요	0000000－	－N	0	00	00	－000N0000m	\sim	0	0	0	\bigcirc
	－	寸～サ䍖	にNON二NN历	$-\infty \underset{\sim}{\infty}$	0	00	－－	O－N00000mN	N	－	15	0	\bigcirc
NOM	∞	웅응́́	¢ ¢ ¢	으 오 용	๓	$0{ }^{\circ}$	$\stackrel{10}{\sim}$		아	N	$\bar{\sim}$	N	\bigcirc
	¢	OON N		Y尺둗	8	O్ల్ల్ల్ల	$\underset{6}{\circ}$	Nợ	N	¢	N	\pm	\ulcorner
$\underset{\sim}{\sim}$	ल	N్N N్ N O		ల్ల:	$\stackrel{\square}{m}$				\％	유N	\％	¢	¢
	$\stackrel{9}{\square}$	$\begin{aligned} & N N_{\infty}^{\infty} \\ & \underset{\sim}{\infty} \underset{\infty}{\infty} \end{aligned}$	־	$\text { 守 } \frac{\infty}{寸} \underset{N}{N}$	\％	$\stackrel{\infty}{\ddagger}$	\mathscr{P}_{8}^{8}		－	¢	N	\sim	N
$0 \infty \text { 灰 } \infty \text { O }$	©	刃心\％	のサワロツツーサ	ONg	N	$\omega \pm$	F＊	NNMONN000n	N	$\stackrel{\sim}{\sim}$	N	\sim	0
	0			下	ल	ㄲ	N		\pm	กٌ	ก	－	－
	8			$\pm \underset{\sim}{ \pm} \underset{\sim}{n}$	¢				－	\％	ホ	$\stackrel{+}{+}$	N
	9	$\underset{\sim}{N} \underset{\sim}{N}$		$\text { 合 } \frac{m}{\infty}$	8	N্O	¢		G		号	∞	\bigcirc
	∇	$\underset{\sim}{\infty} \underset{\sim}{N} \underset{\infty}{N}$	ㄷNN		\bar{m}	กNN	ก	웅	\％	$\stackrel{\text { ® }}{\sim}$	$\stackrel{(1)}{\infty}$	0	N
$\stackrel{\leftrightarrow}{\sim} \text { 두N N }$	$\stackrel{\sim}{0}$	$\underset{\sim}{N} \mathcal{N}_{g}^{-r}$		员	$\stackrel{\text { ¢ }}{\sim}$		会		\cdots	¢	－	ल	ผ
	$\stackrel{\square}{\square}$				＊	$\begin{aligned} & 809 \\ & 808 \\ & \end{aligned}$			$\stackrel{i}{8}$	¢	－	\％	N
										no fluoride			

TABLE 16. Continued

	Number of Exposures	Age (years)*			Reason* \dagger			Treated in Health Facility	Medical Outcome (Effect)*§				
		<6	6-17	>17	Acc	int	Rxn		None	Minor	Moderate	Major	Death
Multiple vitamins pediatric preparations													
no fluoride With iron.	5,870	5,280	535	15	5,807	49	8	221	3,518	313	11	2	0
no fluoride	7,909	7,187	655	21	7,834	58	6	1,374	4,904	960	56	5	0
With iron, with fluoride	443	417	24	2	440	2	0	56	268	43	2	0	0
No iron, with fluoride	1,284	1,238	37	3	1,275	6	2	65	837	57	3	0	0
Vitamin A	1,466	1,300	54	99	1,419	27	15	95	900	80	8	0	0
Niacin	141	35	7	86	88	6	47	11	24	102	0	0	0
Pyridoxine	42	32	1	7	38	1	3	4	22	6	1	0	0
Other B complex vitamins	430	348	19	54	400	18	9	33	206	74	3	0	0
Vitamin C	1,529	1,301	149	64	1,455	54	9	33 66	775	74 135	3 3	0	0
Vitamin D	151	124	5	21	145	4	2	21	87	17	2	0	0
Vitamin E	366	297	18	42	343	18	3	42	206	20	4	0	0
Other/unknown	4.698	4.018	408	216	4,451	200	29	842	2,901	455	27	5	0
Total	30,083	26,167	2,385	1,232	28,497	755	289	3,713	17,386	2,958	169	18	0
Unknown drug	7,267	3,566	1.051	2,342	5,697	1,221	172	2,755	2,840	1,376	264	46	1

Note: *Patients with totally unknown age, reason or medical outcome were omitted from the respective tabulations

[^4]older age groups. Table 11 compares medical outcome and reason for exposure, demonstrating the greater involvement of intentional exposures in cases with a major effect or fatality.

Table 12 outlines the use of initial decontamination procedures, specific antidotes, and measures to enhance elimination in the treatment of patients reported in this database. These must be interpreted as minimum frequencics of use because of the limitations of telephone data gathering. Ipecac syrup was administered in 15.0% of cases. In children, ipecac syrup was most often administered outside a health care facility (Table 13).

A summary of the 328 fatal exposures is presented in Table 14. Each of these cases was abstracted and/or verified by the reporting center. Only fatalities deemed to be "probably" or "undoubtedly" related to the exposure are included. Confirmation of the cause of death by a post-mortem report was obtained in 36% of cases. A review of the fatality data demonstrates frequent deaths from antidepressant drugs, analgesics, street drugs, sedative hypnotics, and carbon monoxide. Where many substances were implicated in a single case, an effort was made to list substances in roughly the order they were feit to have contributed to the death. That determination, however, could not always be made. Abstracts are provided for selected cases at the end of this report (see Appendix).

Tables 15 and 16 provide comprehensive demographic data on patient age, reason for exposure, medical outcome, and use of a health care facility for all 900,513 human exposures presented by category. Table 15 focuses on non-pharmaceuticals; Table 16 focuses on drugs. The categories most frequently implicated in poison exposures were cleaning substances $(85,326)$, analgesics $(80,961)$, plants $(75,005)$ and cosmetics (52,020). Exposure frequencies often represent only market shares of products or home availability and should not be interpreted as toxicity data. Instead, the medical outcome data, especially the fatality rate, should be used for this purpose. For example, plants were the third most common category of implicated substances, but only two fatalities were documented in this group. Also of note, a nearly twofold increase in deaths from street drugs and stimulants occurred as compared with 1984, including 18 cocaine fatalities.

Interestingly, although there were more fatalities from aspirin ingested alone than from acetaminophen alone, the mean age of the acetaminophen fatalities was 36.5 years compared with 63 years among the aspirin deaths. No children were involved in either group. One wonders whether this reflects relatively greater aspirin utilization among the elderly, or only the influence of prior cardiovascular disease on aspirin overdose survival.

References

1. Veltri JC, Litovitz TL. 1983 Annual Report of the American Association of Poison Control Centers National Data Collection System. Am J Emerg Med 1984;2:420-443.
2. Litovitz T, Veltri JC. 1984 Annual Report of the American Association of Poison Control Centers National Data Collection System. Am J Emerg Med 1985;3:423-450.

Appendix: Abstracts of Fatal Poisoning Cases

Case 1. A 2-year-old girl ingested up to 4 ounces of ethanol (tequila) at an unknown time. Child had a cardiopulmonary arrest in the emergency department (ED) and was resuscitated. Initial blood ethanol concentration was $263 \mathrm{mg} / \mathrm{dl}$, then was $208 \mathrm{mg} / \mathrm{dl}$ four hours later. Results of other toxicological analysis were negative. Admission glucose level was $1,269 \mathrm{mg} / \mathrm{dl}$. Pupils were fixed and dilated, and the patient remained on a ventilator. The patient died approximately 20 hours after presentation.
Case 2. A 2-year-old boy was found in respiratory arrest with open bottles of isopropyl alcohol and finger nail polish remover. Cardiac arrest was also noted when the ambulance arrived. Cardiorespiratory resuscitation was successful, but pupils remained fixed and dilated. Toxicological analysis results were: urinary acetone, $25 \mathrm{mg} / \mathrm{dl}$; urinary isopropanol, $10 \mathrm{mg} / \mathrm{dl}$; blood acetone, $27 \mathrm{mg} / \mathrm{dl}$; blood isopropanol, less than $5 \mathrm{mg} / \mathrm{dl}$. Chest radiographs showed left atelectasis. The child was pronounced brain-dead.
Case 7. A 35 -year-old man reportedly ingested 10 diphenhydramine (50 mg) capsules. He was hospitalized in a psychiatric ward. Approximately 11 hours later, the patient was found convulsing, and he then sustained a respiratory arrest. He was transferred to the intensive care unit (ICU) where he was comatose, intubated, placed on a ventilator and given sodium bicarbonate and dopamine. Toxicological analysis revealed a methanol level of $94.8 \mathrm{mg} / \mathrm{dl}$ (14 hours after admission). Ethanol therapy was then started via nasogastric tube. Hemodialysis and peritoneal dialysis were started 21 hours after admission to hospital. The patient remained comatose with fixed, dilated pupils and died on the fourth hospital day. Post-mortem examination confirmed diagnosis of methanol poisoning.

Case 11. A 59-year-old man was found comatose on the street and brought to the ED following a possible ingestion of one glassful of antifreeze (ethylene glycol) at an unknown time. Prior suicide attempts were also reported. Upon initial presentation, the patient was unresponsive to all stimuli, blood pressure was $90 / 0 \mathrm{~mm} \mathrm{Hg}$, pulse was $60 / \mathrm{min}$, and respirations were $28 / \mathrm{min}$. Initial arterial blood gases revealed: $p \mathrm{H}, 7.08 ; \mathrm{P}_{\mathrm{O}_{2}}, 163 \mathrm{~mm} \mathrm{Hg} ; \mathrm{P}_{\mathrm{CO}_{2}}, 10 \mathrm{~mm} \mathrm{Hg}$; bicarbonate, 3 $\mathrm{mmol} / 1 ; \mathrm{O}_{2}$ saturation, 98%. Ethylene glycol levels were not available. Treatment included ethanol therapy for several days and hemodialysis. Acidosis persisted despite massive doses of sodium bicarbonate. Seizures developed and were treated with diazepam and phenytoin. On the seventh hospital day, a computerized tomography (CT) scan revealed "marked destruction of subcortical and basal ganglionic structures symmetrically with cortical edema." The patient remained in ICU on daily dialysis as his blood urea nitrogen (BUN) and serum creatinine continued to climb, reaching
levels of $120 \mathrm{mg} / \mathrm{dl}$ and $11 \mathrm{mg} / \mathrm{dl}$, respectively, on the 14th hospital day. The patient was initially intubated and remained on a ventilator until day 6 , at which time he was weaned from the ventilator. The patient had repeated bouts of sepsis, emanating either from the upper respiratory tract or urinary tract, with no change in renal status. The patient died on the 26th hospital day.

Case 12. A 77-year-old woman became confused and drank ethylene glycol antifreeze instead of lemonade. She was found comatose at home and taken to a local ED 12 hours after the ingestion. Toxicological analysis results were negative except for ethylene glycol, and the urine was negative for crystals (but positive for erythrocytes). The patient was started on intravenous (IV) ethanol and dialysis. Initial ethylene glycol level was $355 \mathrm{mg} / \mathrm{l}$. Pre-dialysis level was 210 mg / l and dropped to $<25 \mathrm{mg} / \mathrm{l}$ over four hours. Patient developed acidosis and decreasing urinary output. Hemodialysis was resumed the next day. She remained acidotic with pH values of 7.22 to 7.26 despite treatment with sodium bicarbonate. The patient remained unresponsive, hypotensive, anuric, and on a ventilator until she died on the third hospital day. An autopsy confirmed ethylene glycol poisoning.
Case 15. A 24 -year-old man ingested an unknown quantity of an alkaline cyanide reagent obtained from his place of employment. He presented to an ED approximately 30 minutes after the exposure with a burn on one lip and mydriasis, but no respiratory distress. Within 10 minutes of arrival he experienced a respiratory arrest and became acidotic. Since a cyanide antidote kit was not available in that emergency department, amyl nitrite was administered and the patient was transported to another facility. He died en route.

Case 17. A 29-year-old man was found unresponsive and asystolic. A suicide note and small unlabeled vial of white powder were found with the patient. The time and route of the exposure were unknown. He was treated with epinephrine, sodium bicarbonate, cardiopulmonary resuscitation (CPR), and intubation, then transported to an ED, where he required defibrillation. The patient sustained multiple cardiac arrests. The toxicology laboratory eventually identified the white powder as $\mathbf{9 1 \%}$ potassium cyanide and 5% potassium hydroxide. Blood cyanide level was $698 \mu \mathrm{~g} / \mathrm{dl}$, gastric aspirate level was $250 \mu \mathrm{~g} / \mathrm{dl}$, thiocyanate level was $12 \mu \mathrm{~g} / \mathrm{ml}$ (time after exposure unknown). Ten grams sodium thiosulfate were then given without effect, and the patient died on the second hospital day.

Case 20. A 33-year-old man ingested ethylene glycol (undetermined amount and time). The patient presented to the ED hyperglycemic ($600 \mathrm{mg} / \mathrm{dl}$) and in metabolic acidosis ($p \mathrm{H} 7.00$). Toxicological analysis revealed an ethylene glycol level of $38 \mathrm{mg} / \mathrm{dl}$. Therapy included oral ethanol and hemodialysis. His blood glucose was difficult to control, frequently exceeding $400-500 \mathrm{mg} / \mathrm{dl}$. No oxalate crystals were present in numerous urinalyses. The patient remained comatose during the entire admission, developed severe renal failure, and died eight days after admission.

Case 25. A 33 -year-old man ingested an unknown quantity of sodium azide less than an hour before admission and was hypotensive ($90 / 50 \mathrm{~mm} \mathrm{Hg}$) with a heart rate of $120 / \mathrm{min}$ and respirations of $40 / \mathrm{min}$. He was hypertonic, diaphoretic, and salivating. An hour after arrival at the hospital, the pa-
tient was comatose with a metabolic acidosis $(p \mathrm{H} 7.1)$ and dilated pupils. He was intubated but breathing spontaneously. Six hours after ingestion, premature ventricular contractions (PVCs), junctional rhythmn disturbances, and Cheyne-Stokes respirations developed. Blood pressure was 66 mm Hg (systolic). Treatment included gastric lavage, 300 mg sodium nitrite IV, lidocaine, and dopamine. The patient died ten hours after ingestion.

Case 26. A 35-year-old man ingested sodium azide (undetermined amount and time). Patient was lethargic and disoriented with severe acidosis unresponsive to approximately 45 amps of sodium bicarbonate, and hypotensive despite aggressive pressor therapy. The patient died in cardiogenic shock.

Case 27. A 38 -year-old man ingested 2 tablespoons of sodium azide one hour before admission. The patient began experiencing seizures in the ambulance. Upon arrival in the ED, he was comatose and in severe respiratory distress with ventricular fibrillation and heart block. Gastric lavage was performed. Severe hypotension was unresponsive to dopamine. Naloxone was given with no response. The patient died 90 minutes after ingestion from cardiac arrest.
Case 28. A 46-year-old man presented with 95% total body surface area burns after falling into a heated vat (195° F) of $\mathbf{5 \%}$ sodium hydroxide at work. Despite standard burn therapy, the patient died 13 days after admission because of renal and cardiac failure and septicemia.
Case 29. An 86-year-old woman presented with vomiting and diarrhea an hour after ingesting five grams of sodium silicofluoride, mistaking it for sugar. Serum calcium shortly after arrival was $5.0 \mathrm{mEq} / \mathrm{l}$. Initial treatment included intravenous fluids and calcium. Upper and lower gastrointestinal (GI) bleeding developed but resolved spontaneously (hematocrit 46%). Initial ECG showed sinus rhythm with non-specific ST and T wave changes, but QT prolongation developed with episodes of polymorphous ventricular tachycardia. Four hours after ingestion, cardiac arrest occurred (a few seconds after rigid laryngoscopy was performed). Serum calcium fell to $4.2 \mathrm{mEq} / 1$, then rose to $12.6 \mathrm{mEq} / \mathrm{l}$ after treatment. Lengthy resuscitative attempts were unsuccessful, and the patient was pronounced dead six hours after the ingestion. Post-mortem examination revealed hemorrhage of the gastric mucosa and perirenal soft tissue. Fluoride levels were: blood, $0.3 \mathrm{mg} / \mathrm{dl}$; kidney, $1.0 \mathrm{mg} / \mathrm{dl}$; liver, $0.4 \mathrm{mg} / \mathrm{dl}$; brain, $0.7 \mathrm{mg} / \mathrm{dl}$; gastric, $38.0 \mathrm{mg} / \mathrm{dl}$.

Case 31. A 15 -year-old woman was found by paramedics with two bottles of white crystals, one labeled sodium nitrite, the other sodium benzoate. Patient was in cardiopulmonary arrest with fixed and dilated pupils. Resuscitation included cardiopulmonary resuscitation (CPR), naloxone, sodium bicarbonate, and methylene blue, but resuscitation was unsuccessful. Initial carboxyhemoglobin level was 22% and methemoglobin level 72.6%.
Case 32. A 29 -year-old woman presented after ingestion of sodium hydroxide drain cleaner crystals with severe necrosis of mouth and pharynx and bleeding ulceration of mouth. Endoscopy showed black eschar from pharynx to duodenum with tracheal involvement. Total gastrectomy and feeding jejunostomy were performed. The course was complicated by bleeding and possible ARDS, which improved by the 7th hospital day. Two days later she devel-
oped pneumonia. The patient died on the 13th hospital day from presumed aortic rupture.

Case 34. A 24-year-old man who ingested approximately $3 / 4$ cup of lye and slashed his wrists and neck presented in hypovolemic shock with bloody emesis, lip burns, and abdominal pain. He developed respiratory complications and was placed on a ventilator for approximately ten days. Burns were evident throughout the GI tract, necessitating gastrectomy, duodenectomy, proximal jejunectomy, and esophagectomy. He was febrite and was treated with steroids, antibiotics, and hyperalimentation. He developed a ruptured aorta and renal failure and died 30 days after the exposure.
Case 35. A 45-year-old man, owner/operator of a dry cleaning business, was found unconscious on the floor in a 40 gallon perchloroethylene spill. Initial care was complicated by hypothermia, hypotension, and bradycardia. Resuscitation including rewarming successfully restored his cardiovascular status, but the patient never regained consciousness and was pronounced brain-dead.

Case 36. A 29 -year-old man accidently ingested a hydrofluoric acid containing rust remover that he mistook for water. Approximately 40 minutes later the patient was totally unresponsive, cyanotic, and asystolic. Resuscitation was unsuccessful and the patient was pronounced dead 90 minutes after the ingestion. Laboratory results available later included: calcium, $3.1 \mathrm{mg} / \mathrm{dl}$; bicarbonate, $12 \mathrm{mEq} / \mathrm{l}$; and plasma fluoride, $35.2 \mathrm{mg} / \mathrm{l}$ (normal less than $0.1 \mathrm{mg} / \mathrm{l}$).

Case 40. A 65 -year-old woman patient with a known history of yellow dye allergy was in anaphylactic shock and seizing uncontroliably after having eaten orange crackers two hours before. The patient received diphenhydramine, epinephrine, and aminophylline. The patient died approximately 72 hours after ingestion. Two years before this incident, the patient had experienced cardiopulmonary arrest from a similar exposure.

Cases 44-45. Two 20-year-old adults fell asleep in the back of a camper pickup truck where a propane space heater was used to keep them warm. A third adult was driving the truck and drove all night before stopping in the moning it a restaurant. The victims were found in cardiopulmonary arrest, one in asystole, the other in an idioventricular rhythm. Both were hypothermic ($35-35.5^{\circ} \mathrm{C}$) and failed to respond to resuscitation.

Case 49. A 37-year-old man was found dead in his residence, and later a carbon monoxide leak was found in the furnace. The victim's carboxyhemoglobin level was 66.7%. Three other family members with depressed mental status were also found in the home, but they survived.

Case 68. A 32 -year-old woman ingested 8 ounces of a rodenticide (arsenic trioxide) one hour before admission. The patient had severe diarrhea, abdominal cramps, and a blood pressure of $80 / 60 \mathrm{mmHg}$. Initial treatment included gastric lavage and activated charcoal followed by dimercaprol. Her condition continued to deteriorate requiring mechanical ventilation and dopamine and levarterenol to maintain blood pressure. The patient died on the fifth hospital day.

Case 69. A 40-year-old man was discovered near a rodenticide (arsenic trioxide 1.5%) in an unresponsive state (undetermined amount and time of ingestion). He was transported to a medical facility and upon arrival was found to have no
vital signs. Resuscitation and gastric decontamination efforts were unsuccessful. Autopsy verified the presence of arsenic and pathological changes consistent with arsenic poisoning.

Case 70. A 40-year-old male gardener inadvertently drank an unknown, foul tasting liquid from a beverage container while on the job. He was admitted with nausea, vomiting, and diarrhea. Ten days after the incident, accidental ingestion of paraquat was suspected. Supportive treatment was insufficient to sustain the patient as respiratory status worsened. The patient died 45 days after exposure. The medical examiner's report attributed death to pulmonary fibrosis secondary to paraquat poisoning.

Case 71. A 39 -year-old man presented to an ED with dyspnea and abdominal pain 3.5 hours after drinking one pint of paraquat. His abdomen was distended, and he had dark urine and polyuria. Laboratory results included: $p \mathrm{H}$, $7.23 ; \mathrm{P}_{\mathrm{O}_{1}}, 120 \mathrm{~mm} \mathrm{Hg} ; \mathrm{P}_{\mathrm{CO}_{2}}, 20 \mathrm{~mm} \mathrm{Hg}$; bicarbonate, 8 mEq/I; leukocyte count $1900 / \mathrm{mm}^{3}$ (left shift); BUN, 11 mg/d!; creatinine, $2.3 \mathrm{mg} / \mathrm{dl}$; potassium, $2.7 \mathrm{mEq} /$; osmolal gap, 38. The patient was hyperventilating and gagging on arrival. Pulse was $120 / \mathrm{min}$ with $80 \mathrm{PVCs} / \mathrm{min}$ and hypertension. Ipecac was given, and supplemental oxygen was withheld. Vomiting and diarrhea developed 11.5 hours after admission. Ethanol infusion was given. Several hours later, the patient became hypoxic; ventricular fibrillation developed, and resuscitative efforts were unsuccessful.

Case 72. A 16-year-old man presented in coma and in cardiac arrest after sniffing freon with friends. Resuscitation was unsuccessful. Post-mortem report demonstrated pulmonary congestion.

Case 75. A 12 -month-old girl presented to the ED comatose, dusky, and with bilateral rales 90 minutes after ingesting an unknown quantity of lamp oil (100% kerosene). Initial blood gases and chest radiograph showed respiratory acidosis secondary to hypoventilation and respiratory distress syndrome. Gastric lavage yielded a large amount of oily material smelling of kerosene. The patient was maintained on a ventilator with aminophylline and antibiotics for 27 days. High volumes of positive end-expiratory pressure (PEEP) were delivered causing a right pneumothorax, corrected by the placement of a chest tube. Laboratory tests revealed high liver enzyme values throughout her hospitalization. The patient died on the 27th day.

Case 76. An 89-year-old man ingested approximately 12 ounces of paint thinner (mineral spirits) that he thought was juice. Patient was found unconscious on the kitchen floor and on presentation to the ED responded only to deep pain. He was cyanotic, hypoventilating, in atrial fibrillation (pulse, $94 / \mathrm{min}$; blood pressure, $60 \mathrm{~mm} \mathrm{Hg} ; p \mathrm{H}, 7.19 ; \mathrm{P}_{\mathrm{CO}_{2}}$, $48 \mathrm{~mm} \mathrm{Hg} ; \mathrm{P}_{\mathrm{or}} .47 \mathrm{~mm} \mathrm{Hg}$; bicarbonate, $18.7 \mathrm{mEq} / \mathrm{l}$) and a radiograph showed diffuse bilateral infiltrates. Activated charcoal and cathartics were given, blood pressure improved to $122 / 60 \mathrm{~mm} \mathrm{Hg}$ (pulse improved to $88 / \mathrm{min}$) after sodium bicarbonate, dopamine and IV fluids were administered. He was placed on PEEP, but his condition continued to deteriorate and he died on the second hospital day. An autopsy demonstrated chemical pneumonitis.

Cases 80 and 81. A 12-year-old and a 13 -year-old girl were found in school by a janitor after alleged exposure to trichloroethane. No spontaneous pulse or respirations were
present. Cardiovascular function was restored in an ED. Lidocaine was given for periodic ventricular tachyarrhythmias, and dopamine was given to maintain blood pressure. Body temperature initially was $32.2^{\circ} \mathrm{C}$. Respiration was mechanically assisted, and spontaneous respiration occurred only occasionally. Over the next few days, no neurological activity was observed, and life support was discontinued.

Case 82. A 27 -year-old male exterminator was applying chlorpyrifos under a house. The patient became unconscious and was taken to the ED in cardiopulmonary arrest. Cardiopulmonary resuscitation was performed for approximately 20 minutes; the patient remained asystolic. There were no signs or symptoms of an organophosphate poisoning. Postmortem examination revealed significant levels of phenylpropanolamine that the patient had been taking therapeutically. It was postulated that the patient had inhaled the fumes from the pesticide solvent and developed cardiac arrhythmias secondary to myocardial sensitization (from the solvent and PPA).

Case 83. A 29 -year-old man ingested $3 / 4$ pint of diazinon and presented in cardiopulmonary arrest an hour later. Treatment included gastric lavage, activated charcoal, atropine (10 g over 52 hours), 2-PAM, and intubation with assisted ventilation. Aspiration pneumonia and ventricular arrhythmias developed, and the patient died 56 hours after admission.

Case 85. A 15 -month-old boy, while playing in the front yard, ran to his mother and complained that he didn't feel well. He then had a convulsion and stopped breathing. Cardiopulmonary resuscitation was initiated by the mother, an ambulance was summoned, and he was taken to the ED where he was found to have bradycardia, pinpoint pupils, and hypersalivation. Chest radiograph was normal. The patient received atropine and gastric lavage. Over the next three hours, he experienced cardiopulmonary arrest many times, but was finally stabilized, intubated, and placed on a ventilator. Atropine therapy was continued, and 2-PAM was administered. Naloxone was given without results. Plasma and erythrocyte cholinesterase activities were undetectable. Over the next two days, a drop in urinary output was treated with furosemide and mannitol, and hypotension was treated with dopamine. Three days after the incident, an electroencephalogram (EEG) showed no electrical activity, and lifesupport systems were discontinued. Subsequent laboratory analyses showed fonofos in the patient's gastric aspirate and urine, and also on his shirt.

Case 87. A 33-year-old man ingested 8 ounces of a mosquito repellant containing diethyl-meta-toluamide. One to two hours later, he experienced a cardiorespiratory arrest and developed DIC. The patient was intubated and placed on a ventilator. On day 2 he became hyperglycemic (blood glucose $250 \mathrm{mg} / \mathrm{dl}$) and developed status epilepticus, which was treated with phenytoin. He developed cerebral edema and died nine days after ingestion.

Case 88. A 26 -month-old boy presented in cardiopulmonary arrest 7.5 hours after allegedly ingesting dishwashing liquid. Approximately 15 hours after exposure, the child began demonstrating tongue and upper arm fasciculations. Organophosphate toxicity was suspected, and cholinesterase levels were drawn. Plasma cholinesterase was 0.2 (normal
1.3-4.5), erythrocyte cholinesterase was 3.9 (normal 8.6-12.8). Salivation was reported 15.5 hours after ingestion. Administration of 2-PAM was advised at this point, although there is no record of such administration. The child died on the second hospital day. Autopsy confirmed organophosphate poisoning.

Case 90. A 30 -year-old woman ingested an unknown quantity of a sodium fluoride roach killer. About two hours later, she had the abrupt onset of rigidity and a possible seizure and developed ventricular fibrillation. She was given $2-3 \mathrm{~g}$ of calcium chloride but could not be resuscitated. Autopsy report revealed a tissue fluoride level of $7.4 \mathrm{mg} / \mathrm{l}$ and a gastric fluoride level of $18 \mathrm{mg} / \mathrm{l}$.
Cases 91-94. Four Mexican farm workers, ages 27, 31. 38 , and 42 years, were admitted to the hospital after eating wild mushrooms in North San Diego County four days before admission. The mushrooms were described as large with a white cap. Patients were staying for the past several days at a downtown shelter where they were described as having been very sick with severe vomiting. Upon arrival at the hospital, they were all disoriented with evidence of severe hepatotoxicity, coagulopathy, and renal failure. (Their serum glutamic oxaloacetic transaminases [SGOT] ranged from 5,000 to $20,000 \mathrm{U} / \mathrm{l}$; prothrombin times ranged from 70 to 100 seconds; serum creatinine ranged from 1.4 to 3 $\mathrm{mg} / \mathrm{dl}$.) They were treated with activated charcoal and supportive care. Peritoneal dialysis was begun because of anuria. Three patients died two days after admission from profound hypotension and bradycardia followed by asystole, which was unresponsive to resuscitative efforts. The fourth patient died seven days after admission. No mushroom samples were available for identification; however, mycologists reported that samples of Amanita ocreata had been found in the area.

Case 97. A 38 -year-old woman who was depressed and had domestic problems, was found in a coma with labored respirations in her basement. Near her was an empty container of furniture refinisher (methanol $\mathbf{3 0 \%}$, methylene chloride 30%, toluene 15%, acetone 30%, and isopropanol 5%). She had last been seen well approximately 16 hours before. Initial presentation included a blood pressure of $50 / 0 \mathrm{~mm}$ Hg , respiratory rate of $30 / \mathrm{min}$, pulse of $90 / \mathrm{min}$, and a rectal temperature of $33.9^{\circ} \mathrm{C}$. She was acidotic ($p \mathrm{H} 7.0$ after initial sodium bicarbonate). Treatment included IV fluids, dopamine, levarterenol, gastric lavage, ethanol, leucovorin, and peritoneal dialysis. Her pupils remained fixed and dilated, and hypotension persisted. Initial laboratory results revealed: acetone, $2,249 \mathrm{mg} / \mathrm{l}$; methanol, $1,084 \mathrm{mg} / 1$; isopropanol, $518 \mathrm{mg} / \mathrm{l}$; ethanol undetected. Disseminated intravascular coagulopathy (DIC) and acute hemolysis developed, and the patient died approximately 40 hours after presentation.

Case 98. A 5 -year-old girl was found dead in the morning by her parents. The child had been playing in an area around their residence on the evening prior to death. Before going to bed, the child had complained of not feeling well and double vision, which the parents attributed to a "cold." Upon autopsy, a large quantity of plant material was found in the stomach that was identified as Conium maculatum (poison hemlock).

Case 99. A man in his twenties ingested Cicuta maculata
(water hemlock) for nourishment in the backwoods Yellowstone National Park. The patient was 90 minutes from a health care facility. One hour after exposure, when the health care facility was initially contacted, he was experiencing seizures every $15-20$ minutes and was comatose; pulse was $170 / \mathrm{min}$, and breathing was labored. Cardiopulmonary resuscitation was performed for an hour while the patient had seizures every 10 minutes. No medications were available for administration, and resuscitative efforts were unsuccessful.

Case 101. A 15 -month-old boy was found with a 2 -ounce bottle of gun bluing (unknown amount ingested). The child vomited $10-15$ minutes after the ingestion. He was subsequently lavaged and then became stuporous. Activated charcoal was administered, after which the child vomited and aspirated. Thereafter, the child developed a cardiopulmonary arrest and could not be resuscitated. At autopsy, findings consistent with aspiration pneumonitis were found along with the following serum levels: methanol, undetectable; copper, within normal limits; selenium, $440 \mu \mathrm{~g} / \mathrm{dl}$ (normal $10-20 \mu \mathrm{~g} / \mathrm{dl}$). The cause of death was listed as selenium poisoning.

Case 108. A 38 -year-old man ingested approximately 30 acetaminophen/diphenhydramine capsules two days before admission, as well as several more the following day. He also ingested 6 to 7 acetaminophen 500 mg tablets over this period. On admission, the patient was lethargic with a respiration rate of $32 / \mathrm{min}$, a pulse of 105 beats $/ \mathrm{min}$, a blood pressure of $148 / 88 \mathrm{~mm} \mathrm{Hg}$, a temperature of $35.9^{\circ} \mathrm{C}$, a $p \mathrm{H}$ of $6.97, \mathrm{P}_{\mathrm{CO}_{2}}$ of $25 \mathrm{~mm} \mathrm{Hg}, \mathrm{HCO}_{3}$ of $5.7 \mathrm{mmol} / \mathrm{l}$, creatinine of $1.9 \mathrm{mg} / \mathrm{dl}$, prothrombin time of 46.2 seconds (control, 13 seconds), partial prothrombin time of 76.1 seconds (control, 33.6 seconds) a platelet count of $16,000 / \mathrm{mm}^{3}$, a hemoglobin value of $16.3 \mathrm{~g} / \mathrm{dl}$, a hematocrit of 51%, and a leukocyte count of $17,700 / \mathrm{mm}^{3}$. The acetaminophen serum concentration approximately 36 hours after ingestion was $68 \mu \mathrm{~g} / \mathrm{ml}$. N -acetylcysteine, sodium bicarbonate, and vitamin K_{1} were administered. The patient's condition began to deteriorate. Hematemesis and melena developed. At 24 hours following admission, his liver edge became palpable, and his serum creatinine continued to rise. He became confused and increasingly combative. He was then sedated, and lactulose enemas, neomycin per nasogastric (NG) tube, packed cells, fresh-frozen plasma, and platelets were administered. The patient continued to bleed extensively. On the morning of the third hospital day, the patient became hypotensive requiring dopamine, then experienced a cardiac arrest that was unresponsive to resuscitation. Post-mortem examination revealed multifocal hepatic necrosis, massive retroperitoneal and gastrointestinal hemorrhage, cardiomegaly, and bilateral pulmonary congestion.

Case 130. A 26-year-old man with recent depression presented after several hours of vomiting. Patient rapidly deteriorated from sinus tachycardia to ventricular fibrillation and experienced a seizure. Laboratory results from samples drawn on initial presentation but only available after death were: salicylate level, $96 \mathrm{mg} / \mathrm{dl}$; repeat salicylate, $147 \mathrm{mg} / \mathrm{dl}$; normal electrolytes; normal cerebrospinal fluid (CSF); $p \mathrm{H}$, $7.46 ; \mathrm{P}_{\mathrm{CO}_{2}}, 31 \mathrm{~mm} \mathrm{Hg}$; and $\mathrm{P}_{\mathrm{O}_{2}}, 105 \mathrm{~mm} \mathrm{Hg}$. The patient died 7.5 hours after presentation, still with no diagnosis. An autopsy showed pulmonary edema and multiorgan hyperemia.

Urine toxicology screen revealed amoxapine. Post-mortem serum salicylate level was $212 \mathrm{mg} / \mathrm{dl}$.

Case 139. A 13 -year-old girl ingested 50 mg of colchicine 22 hours before presenting with nausea, vomiting, and diarrhea. She was initially alert and oriented. Two days later she became progressively more hypotensive and died, despite therapy with fluids and pressor agents. At autopsy, she had pulmonary edema with pleural effusions and intra-alveolar hemorrhages. Also present were gastrointestinal hemorrhages, ascites, and cerebral edema.

Case 140. A 42-year-old man, known to be a substance abuser, ingested an unknown amount of colchicine in a street-prepared gel used for "colchicine-dipping" (the practice of marijuana growers of treating the seeds prior to planting, purportedly to increase THC content of the plant). This occurred approximately 21 hours prior to his death. He presented to ED the same day complaining of nausea, vomiting, and diarrhea. He was sent home after a brief evaluation, but re-admitted later that day with breathing difficulties, pulmonary edema, severe acidosis (pH 6.8) and hypotension, and died eight hours later. Serum colchicine test results were negative, but colchicine was detected in the myocardium on post-mortem examination. The medical examiner listed the cause of death as diffuse myocardial necrosis secondary to acute colchicine intoxication. Involvement of other drugs was not excluded.

Case 141. A 64 -year-old man ingested 40 ibuprofen (600 mg) tablets over a day and presented with guaiac positive emesis, confusion, and tachycardia ($120 / \mathrm{min}$). Blood pressure and respirations were normal. Laboratory studies demonstrated an anion gap and a respiratory alkalosis (sodium, $130, \mathrm{mEq} / \mathrm{l}$; potassium, $4.6 \mathrm{mEq} / \mathrm{l}$; chloride, $98 \mathrm{mEq} / 1 ; \mathrm{CO}_{2}$, $13 \mathrm{mEq} / \mathrm{l} ; \mathrm{P}_{\mathrm{CO}_{2}}, 18 \mathrm{~mm} \mathrm{Hg} ; p \mathrm{H}, 7.47$). Toxicologic analysis revealed an ibuprofen level of $15.8 \mu \mathrm{~g} / \mathrm{ml}$ (blood) and no salicylates were present. Treatment included gastric lavage, activated charcoal, and magnesium citrate. The next day, the patient had a distended colon and was experiencing renal failure (BUN $112 \mathrm{mg} / \mathrm{dl}$, creatinine $3.2 \mathrm{mg} / \mathrm{dl}$, potassium $3.6 \mathrm{mEq} / \mathrm{I})$. Septic shock developed. The patient died three days after the ingestion.

Case 142. A 6-year-old child presented to ED with a laceration of the lip and was given a combination of meperidine 30 mg , promethazine 15 mg , and chlorpromazine 15 mg . Ten minutes after injection, the vital signs were reported as being within normal limits. Later, the child's lip was injected with 40 mg lidocaine with epinephrine. Ninety minutes after the initial injection and during the suturing procedure, the child was found to be in cardiac arrest with asystole. Resuscitative efforts were unsuccessful.

Case 155. A 2-year-old girl was found comatose and cyanotic, and was transported to an ED where CPR was performed. Initially, there was no history of an ingestion, but it was later discovered that the child was found near empty bottles of erythromycin and lidocaine 2% viscous. Patient was placed on a ventilator and required dopamine and dobutamine. Lidocaine blood concentration four hours after ingestion was $4.1 \mu \mathrm{~g} / \mathrm{ml}$. Methemoglobin concentration was 1.1%. Twenty four hours after admission the patient was determined to have a necrotic abdomen and brain death. It was discovered that the child had been receiving lidocaine viscous for mouth ulcers over a period of 4 days (swallowing
each dose.) The child died approximately 27 hours after ini tial presentation.

Case 170. A 24 -year-old woman ingested 5 g of amitriptyline and 5 g of doxepin and was found unconscious and seizing five hours later. Evaluation in the ED revealed a blood pressure of 60 mm Hg systolic (Doppler), QRS interval greater than 0.3 seconds, continuous tonic/clonic seizures, and a $p \mathrm{H}$ of 6.98 . Treatment included intubation with mechanical ventilation, cardiac monitoring, sodium bicarbonate, dopamine, gastric lavage, activated charcoal, and magnesium citrate. Despite attempts to control seizures with $70-80 \mathrm{mg}$ diazepam, 8 mg physostigmine, 1 g phenytoin, and 400 mg phenobarbital, they never completely subsided. Patient's acidosis was sufficiently corrected; however, maximum blood pressure attained was only 90 mm Hg . Temperature rose to $42.2^{\circ} \mathrm{C}$ rectally, with no response to external cooling, aspirin, or acetaminophen. Initial catheterization yielded 45 ml of bloody urine but no further urinary output. The patient died 19.5 hours after admission. Urinary drug screen revealed cannabinoids, while amitriptyline and aspirin were found in the gastric contents.

Case 182. An 18 -year-old woman ingested 2.5 g of amoxapine. She presented 3.5 hours later with lethargy and a pulse of $140-150 / \mathrm{min}$. The patient was lavaged, and activated charcoal was administered. The patient then began experiencing seizures and was unresponsive to diazepam, phenobarbital, and phenytoin. Status epilepticus persisted for approximately seven hours. Temperature rose to $42.1^{\circ} \mathrm{C}$. A brief episode of ventricular tachycardia occurred during placement of a CVP line. The patient was declared braindead on fourth hospital day.

Case 186. A 60 -year-old woman was reported to have ingested unknown amounts of amoxapine, thiothixene, and aspirin. She presented with seizures and developed status epilepticus. Treatment included diazepam, physostigmine, activated charcoal, magnesium citrate, intubation, phenobarbital, and phenytoin. There were no ECG abnormalities until, following prolonged seizure activity, the patient developed bradycardia and experienced a cardiac arrest. Following resuscitation the patient was decerebrate, febrile $\left(42.2^{\circ} \mathrm{C}\right.$), and hypotensive requiring a dopaminc drip. An EEG showed no activity. The patient died the following day.

Case 198. A 27 -year-old man ingested 10 doxepin capsules and developed coma, seizures, widened QRS complex and tachycardia. Blood pressure was 85 mm Hg systolic, and $p \mathrm{H}$ was normal. The patient was intubated, lavaged, and given activated charcoal, diazepam, physostigmine, dopamine, levarterenol, and sodium bicarbonate. Phenytoin, phenobarbital, and diazepam were administered in attempt to treat seizures. Core temperature increased to $41.7^{\circ} \mathrm{C}$ and was brought down to $37.3^{\circ} \mathrm{C}$ with a cooling blanket. The patient was paralyzed with pavulon. Urine was brick red. The patient continued to deteriorate over next two days with supportive care until death. Autopsy confirmed doxepin overdose.

Case 203. An 18 -month-old boy ingested a "whole bottle" of imipramine (50 mg tablets) approximately 30 minutes before arrival in the ED. While gastric lavage was being attempted, the patient had a seizure and cardiac ar-
rest. Lorazepam, dopamine, sodium bicarbonate, and antiarrhythmics were administered, and the child was stabilized. He was comatose with a normal sinus rhythm, but remained hypotensive. Approximately 5.5 hours later, he developed a widened QRS complex, had a blood pressure of $60 / 40 \mathrm{~mm} \mathrm{Hg}$ on dopamine, and had no urinary output. Sodium bicarbonate and physostigmine were administered. The patient continued to deteriorate, developing seizures and arrhythmias that did not respond to treatment, and died 27.5 hours after ingestion.

Case 217. A 55 -year-old woman presented with a lithium concentration of $4.88 \mathrm{mEq} / \mathrm{l}$ following treatment for a bipolar affective disorder. She presented in the ED awake but uncommunicative with clonus and positive Babinski reflexes. Her blood pressure was $140 / 106 \mathrm{~mm} \mathrm{Hg}$, pulse was $106 / \mathrm{min}$, respirations were $16 / \mathrm{min}$, repeat lithium level was $4.6 \mathrm{mEq} / \mathrm{l}$, leukocyte count was $24,600 / \mathrm{mm}^{3}$, and BUN was $41 \mathrm{mg} / \mathrm{d}]$. She had a urinary tract infection, and her urinary screen was positive for amoxapine and ethanimate. Concomitant acute and chronic overdose were assumed. Serum lithium was reduced to $0.6 \mathrm{mEq} / \mathrm{l}$ in two hours by dialysis. Further treatment included urinary alkalinization with sodium bicarbonate, mannitol, acetazolamide, gentamicin. and blood transfusions. While some increase in kidney function was seen, the mental status never improved. The patient died on the sixth hospital day.

Case 219. A 20 -year-old woman taking lithium 600 mg tid and haloperidol 10 mg qid collapsed in the psychiatric clinic, and was comatose and dehydrated. Her blood pressure was $90-100 \mathrm{~mm} \mathrm{Hg}$ systolic, pulse was $116 / \mathrm{min}$, Na was 172 $\mathrm{mEq} / \mathrm{l} . \mathrm{K}$ was $5.4 \mathrm{mEq} / \mathrm{l}, \mathrm{BUN}$ was $12 \mathrm{mg} / \mathrm{dl}$, creatinine was $7.2 \mathrm{mg} / \mathrm{dl}$, and lithium was $3.7 \mathrm{mEq} / \mathrm{l}$. No decontamination was done initially. The patient received fluids, but no improvement was observed. Hemodialysis was performed on the third hospital day. The patient remained in critical and unstable condition. She suffered cardiac arrest on the third day and was resuscitated. Dopamine was required to maintain blood pressure. The patient died on the fourth hospital day.

Case 220. A 27 -year-old man ingested approximately 90 loxapine capsules and presented a few hours later alert. oriented, anxious, with slurred speech and extrapyramidal symptoms. He was given diphenhydramine, then had a grand mal seizure 10 minutes after arrival in the ED and was comatose afterwards. Gastric lavage was performed. His condition continued to deteriorate; he became acidotic and was given sodium bicarbonate, then suffered a cardiac arrest 1.5 hours after presentation and could not be resuscitated. Blood was positive for phenobarbital, and urine was positive for phenobarbital and diphenhydramine. An autopsy confirmed loxapine overdose. Postmortem loxapine blood level was $0.42 \mathrm{mg} / \mathrm{dl}$ and the stomach and the bile also contained loxapine.

Case 225. A 27 -year-old man was comatose and hypotensive when he presented approximately eight hours after ingestion of an unknown amount of phenelzine. Pupils were fixed and dilated, and anuria was evident. Patient was initially hyperthermic $\left(42.2^{\circ} \mathrm{C}\right)$, but then became hypothermic ($32.2^{\circ} \mathrm{C}$). Patient was lavaged, but no charcoal was given.

Blood pressure was maintained with vasopressors, and hemodialysis was performed. The patient's condition continued to deteriorate. Three cardiac arrests occurred, and the patient died on the third hospital day. An autopsy confirmed phenelzine overdose.

Case 244. An 88 -year-old woman ingested digoxin (unknown amount, unknown time). Patient was lethargic and in atrial fibrillation with occasional PVCs. No gastrointestinal decontamination was done. Heart rate was 150-160 beats/ min . Ventricular fibrillation developed, and the patient died approximately two hours after admission to hospital. Digoxin level was $29 \mathrm{ng} / \mathrm{ml}$.

Case 245. A 12 -month-old girl ingested nifedipine (unknown amount, unknown time). Patient was hypotensive on presentation with a heart rate of $150 / \mathrm{min}$ and depressed respirations. Patient became lethargic within 7 minutes of arrival and had a cardiorespiratory arrest. Resuscitation included intubation, CPR, and sodium bicarbonate, epinephrine, calcium gluconate, and transthoracic pacing, but was unsuccessful.

Case 247. An 18 -ycar-old woman arrived at the ED in seizures with a pulse of $50 / \mathrm{min}$ and a stable blood pressure after ingesting $50-60$ propranolol 80 mg tablets. Initial treatment included gastric lavage, activated charcoal, and cathartics. The patient then went into cardiorespiratory arrest and was revived with sodium bicarbonate, epinephrine, and cardioversion. The patient was admitted to the ICU on a glucagon drip with a pulse of $80-90 / \mathrm{min}$. Respirations were poor with bronchospasm, pupils were fixed and dilated, and the patient remained unresponsive. Aminophylline was administered. Twelve hours after initial ED presentation blood pressure dropped to 60 mm Hg , pulse rose to $120 / \mathrm{min}$, and dopamine was administered. Eighteen hours later, on the second hospital day, the patient had a cardiorespiratory arrest and died.

Case 257. A 3-year-old girl ingested an undetermined number of ferrous sulfate 300 mg tablets. Three hours after ingestion, the initial serum iron level was $3,805 \mu \mathrm{~g} / \mathrm{dl}$ and the child responded only to deep pain. Blood pressure was normal and urinary output was good. The child was lavaged with sodium bicarbonate and reccived activated charcoal. An exchange transfusion was performed. Within eight hours the iron level decreased to $856 \mu \mathrm{~g} / \mathrm{dl}$, and the child was treated with intravenous deferoxamine. At approximately 21 hours after the ingestion, the patient became hypovolemic secondary to gastrointestinal bleeding. At 26 hours after ingestion, the child suffered two cardiac arrests. The child died two days after the ingestion.

Case 258. A 20 -month-old girl ingested 4 ounces of phenylpropanolamine/chlorpheniramine syrup. The babysitter had no ipecac syrup so gave sodium bicarbonate. Serum sodium concentration on admission was $184 \mathrm{mEq} / \mathrm{l}$. The patient's temperature was $42.2^{\circ} \mathrm{C}$. Two hours later, the temperature was $41.1^{\circ} \mathrm{C}$ on a cooling blanket, and the patient was in status epilepticus. Cardiopulmonary arrest occurred 14 hours after the ingestion. Resuscitation was attempted for two hours.

Case 259. A 13-year-old girl arrived in the ED in cardiopulmonary arrest. She had been found unresponsive at
home after ingesting loperamide. Resuscitative efforts were unsuccessful. Post-mortem examination revealed acute pulmonary edema and a serum phenobarbital concentration of $65 \mu \mathrm{~g} / \mathrm{ml}$.

Case 260. A 15 -year-old boy ingested approximately 80 cyclobenzaprine tablets and presented in coma unresponsive to any stimuli, with hypothermia, tachycardia, and dilated pupils 8 to 12 hours later. Initial therapy included lavage, activated charcoal, and cathartics. The patient stabilized but continued to be unresponsive. He became agitated after a test dose of physostigmine (2 mg). At approximately 20 hours after ingestion, the patient developed severe respiratory distress syndrome and pulmonary edema. Cardiac arrest ensued and resuscitation was successfully performed. He died on the eighth hospital day. Final diagnosis was death caused by massive cerebral edema and anoxic brainstem damage secondary to cyclobenzaprine overdose.

Case 265. A 9 -month-old girl ingested three to five chlorpromazine 100 mg tablets and presented with lethargy, becoming progressively unresponsive an hour later. Treatment included gastric lavage and activated charcoal. No radioopaque tablets were observed on a radiograph. The child's condition worsened. Seizure activity was treated with phenytoin, and the child had to be intubated. The patient suffered a cardiorespiratory arrest but was resuscitated and stabilized. Her condition continued to deteriorate, and she remained unresponsive. Dopamine was infused to maintain blood pressure. The patient died 20 hours atter ingestion. An autopsy confirmed cause of death.

Case 274. A 25 -year-old woman presented 19 hours after ingesting 30 haloperidol (20 mg) tablets alert and oriented with blood pressure $118 / 90 \mathrm{~mm} \mathrm{Hg}$ and a pulse of $88 / \mathrm{min}$. She had vomited several times prior to presentation. Treatment included activated charcoal in sorbitol. The patient was admitted to a psychiatric unit following "medical clearance." Twenty-five hours after ingestion, patient had no anticholinergic symptoms and QRS complex was not wide. The patient died during the night. The medical examiner reported death as "accidental-idiosyncratic reaction to medication."

Case 285. A 48 -ycar-old woman with a history of a myocardial infarction nine months before, was alert but lethargic when admitted to the intensive care unit after an ingestion of unknown drugs. Initial therapy included lavage and activated charcoal. Several runs of ventricular tachycardia were observed, which responded to lidocaine, procainamide, or cardioversion, with subsequent maintenance of normal sinus rhythm on phenytoin and lidocaine. The initial serum thioridazine level was $5,000 \mathrm{ng} / \mathrm{ml}$ (therapeutic, $250-1250$ $\mathrm{ng} / \mathrm{ml})$. The patient died two days after admission because of refractory ventricular tachycardia.

Case 291. A 21-year-old man ingested an unknown quantity of cocaine 30 minutes before admission in an attempt to hide the substance from police. Upon arrival in the ED, the patient was in full cardiorespiratory arrest, resuscitated, and placed on a ventilator. The patient remained comatose with fixed and dilated pupils. Gastrointestinal decontamination with gastric lavage, activated charcoal and cathartic was performed. Over the next 12 hours, the patient's body tem-
perature increased to $42.8^{\circ} \mathrm{C}$, and he began suffering unremitting tonic-clonic seizures unresponsive to diazepam and phenytoin. The patient then developed DIC, began bleeding uncontrollably, and required fresh frozen plasma and whole blood. Toxicology screen revealed cocaine $0.2 \mathrm{mg} / \mathrm{l}$, lidocaine $37 \mathrm{mg} / \mathrm{l}$, phenytoin $4.4 \mathrm{mg} / \mathrm{l}$, and morphine $130 \mu \mathrm{~g} / \mathrm{l}$. The patient died on the second hospital day. Post-mortem examination confirmed multiple drug overdose.

Case 294. A 25 -year-old man ingested 3 to 5 g of cocaine approximately 3 to 4 hours before presentation. The patient was comatose and on a ventilator with a blood pressure of 60 mm Hg systolic and ventricular fibrillation. A Swan-Ganz catheter was placed and dopamine and norepinephrine therapy was begun. By the second hospital day the patient was experiencing renal failure and undergoing peritoneal dialysis. He remained unresponsive and died on the fourth hospital day.

Case 297. A 29-year-old man presented to an ED in cardiac arrest an hour after ingesting a $5-\mathrm{g}$ bag of cocaine in a suicide attempt. Six hours after resuscitation, the patient was on a ventilator, was unresponsive to pain. his pupils were fixed and dilated, and he was hyperthermic ($40.1^{\circ} \mathrm{C}$) and had seizures poorly controlled by diazepam. Blood pressure at this time was $120 / 80 \mathrm{~mm} \mathrm{Hg}$ on dopamine. Activated charcoal was given. Serum cocaine level was 27.5 $\mathrm{mg} / \mathrm{ml}$. Sodium pentothal by continuous infusion was utilized successfully to control seizure activity. The patient's condition continued to deteriorate, and an EEG two days after ingestion showed brain death. The patient died six days after admission. Post-mortem report confirms cause of death as mixed drug ingestion and bronchopneumonia. Urine was positive for cocaine, phencyclidine, and marijuana.

Case 316. An 18 -year-old woman ingested a street drug MDMA (Ecstacy) at a night club. She was brought to the ED in cardiopulmonary arrest. Cardiopulmonary resuscitation
was performed, but the patient could not be resuscitated. On examination, there was evidence of massive pulmonary edema. A small amount of ethanol and MDMA were present on post-mortem examination.
Case 324. An elderly, debilitated man was inadvertently administered 30 ml hexachlorophene in 90 ml water via nasogastric tube. He vomited spontaneously. Respiratory distress was not observed. The patient was suctioned immediately but received no other therapy. He died within 10 minutes of the exposure. Post-mortem examination revealed signs of aspiration; hexachlorophene was not detected in serum.
Case 325. A 30-year-old man ingested approximately 2 ounces of oil of wintergreen 12 hours before admission. He presented with a respiratory rate of $40 / \mathrm{min}$, a $\mathrm{P}_{\mathrm{O}_{2}}$ of 80 mm Hg , a $\mathrm{P}_{\mathrm{CO}_{2}}$ of 10 mm Hg , and a $p \mathrm{H}$ of 7.4. Initial salicylate level was $77 \mathrm{mg} / \mathrm{dl}$ approximately 12 hours after ingestion. The patient was breathing on his own on admission. Diagnosis was ARDS. Respiratory status deteriorated within 12 hours after admission. The patient was given sodium bicarbonate and intubated as his $p \mathrm{H}$ fell to 7.19. Dialysis was thought to be too risky at that time because of the critical condition of patient. Approximately 12 hours after admission, the patient developed bradycardia and hypotension and died.

Case 326. A 37 -year-old woman ingested one teaspoon of oil of wintergreen four hours before admission to "treat a cold." Upon presentation, the patient was alert and oriented, with a history of vomiting, a respiratory rate of 20 / min , and a blood pressure of $138 / 80 \mathrm{~mm} \mathrm{Hg}$. Salicylate levels were $80 \mathrm{mg} / \mathrm{dl}$ (six hours after ingestion) and 128 $\mathrm{mg} / \mathrm{dl}$ (14 hours after ingestion). Treatment included diuresis and sodium bicarbonate. Coma and hyperventilation developed. The patient died approximately 16 hours after the ingestion.

[^0]: From the Data Collection Committee, American Association of Poison Control Centers.

 The authors acknowledge the generous contribution of Micromedex, Inc., to the programming and processing of this annual report.

 Centers participating in this year's report include: Alabama Poison Center, Tuscaloosa, AL; Arizona Poison Control System, Tucson, AZ; St. Luke's Poison Center, Phoenix, AZ; Fresno Community Hospital Regional Poison Control Center, Fresno, CA; Orange County Poison Center, Orange, CA; San Diego Regional Poison Center, San Diego, CA; San Francisco Bay Area Regional Poison Center, San Franciso, CA; Rocky Mountain Poison Center, Denver, CO; National Capital Poison Center, Washington, DC; Idaho Poison Control Center, Boise, ID; MidAmerica Poison Center, Kansas City, KS; Kentucky Regional Poison Center of Kosair-Children's Hospital, Louisville, KY; Louisiana Regional Poison Control Center, Sreveport, LA; Marytand Poison Center, Baitimore, MD; University of Michigan Poison Center, Ann Arbor, MI; Children's Hospital of Michigan Poison Control Center, Detroit, MI; Blodgett Regional Poison Center, Grand Rapids, MI; Great Lakes Poison Control Center, Kalamazoo, MI; Midwest Poison Center, Kalamazoo, MI; Saginaw Regional Poison Center, Saginaw, MI; Hennepin Poison Center, Minneapolis, MN; Minnesota Poison Control System, St. Paul, MN; St. Louis Regional Poison Center, St. Louis, MO; Mid-Plains Poison Control Center, Omaha, NE; New Jersey Poison Information and Education System, Newark, NJ; Hudson Valley Poison Center, Nyack, NY; Triad Poison Center, Greens-

[^1]: boro, NC; North Dakota Poison Center, Fargo, ND; Akron Regional Poison Center, Akron, OH; Stark County Poison Control Center, Canton, OH; Greater Cleveland Poison Control Center, Cleveland, OH ; Central Ohio Poison Control Center, Columbus, OH ; Oregon Poison Center, Portland, OR; Keystone Region Poison Center, Altoona, PA; Northwest Poison Center, Erie, PA; Capital Area Poison Center, Hershey, PA; St. Joseph Poison Center, Lancaster, PA; Pittsburgh Poison Center, Pittsburgh, PA; Rhode Island Poison Center, Providence RI; Southern Poison Center, Inc., Memphis, TN; North Central Texas Poison Center, Dallas, TX; Intermountain Regional Poison Control Center, Salt Lake City, UT; Blue Ridge Poison Center, Charlottesville, VA; Tidewater Poison Center, Norfolk, VA; Central Virginia Poison Center, Richmond, VA; Seattle Poison Center, Seattle, WA; Spokane Poison Center, Spokane, WA; Mary Bridge Poison Center, Tacoma, WA; Central Washington Poison Center, Yakima, WA; West Virginia Poison Center, Charleston, WV: Eau Claire Poison Center, Eau Claire, WI; Green Bay Polson Center, Green Bay, Wi; LaCrosse Area Poison Center, LaCrosse, Wl; University of Wisconsin Hospital Regional Poison Control Center, Madison, WI; Milwaukee Children's Hospital Poison Center, Milwaukee, WI; Wyoming Poison Center. Cheyenne, WY.
 © 1985 , 1986, by the American Association of Poison Control Centers. Published by permission. All rights reserved.

 Address reprint requests to Dr. Litovitz: National Capital Poison Center, Georgetown University Hospital, 3800 Reservoir Road, NW, Washington, DC 20007

[^2]: * Age in years unless otherwise indicated; specific age provided where known.
 \dagger For route of exposure, ing = ingestion, inh = inhalation, derm = dermal, paren = parenteral.
 \ddagger For reason for exposure, acc =accidental, advrxn = adverse reaction, gen = general, int = intentional, occ=occupational, unk = unknown.
 § Abstract of case provided at end of article.
 ${ }^{11}$ Chronic exposures (all others are acute).

[^3]: Patients with totally unknown age, reason, or medical outcome were omited from the respective tabulations.
 t Medical outcome data were also collected in categories labelled "unknown, nontoxic," "unknown, potentially toxic," and "unre-
 lated effect." Thus, the numbers listed here do not represent the total poison exposure experience. \S Acc $=$ accidental, $\operatorname{Int}=$ intentional, $A d v R \times n=$ adverse reaction.

[^4]: § Medical outcome data were also collected in categories labetled "unknown, nontoxic," "unknown, potentially toxic," and "unre-
 lated effect." Thus, the numbers listed here do not represent the total poison exposure experience,

